These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 25659914)

  • 1. Reducing bias and analyzing variability in the time-left procedure.
    Trujano RE; Orduña V
    Behav Processes; 2015 Apr; 113():132-42. PubMed ID: 25659914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do rats represent time logarithmically or linearly?
    Yi L
    Behav Processes; 2009 Jun; 81(2):274-9. PubMed ID: 19007867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time left: linear versus logarithmic subjective time.
    Gibbon J; Church RM
    J Exp Psychol Anim Behav Process; 1981 Apr; 7(2):87-107. PubMed ID: 7241054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Failure of central 5-hydroxytryptamine depletion to alter the effect of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) on timing performance on the free-operant psychophysical procedure.
    Body S; Chiang TJ; Mobini S; Ho MY; Bradshaw CM; Szabadi E
    Psychopharmacology (Berl); 2001 Nov; 158(3):305-13. PubMed ID: 11713621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shifts in the psychophysical function in rats.
    Guilhardi P; Macinnis ML; Church RM; Machado A
    Behav Processes; 2007 Jun; 75(2):167-75. PubMed ID: 17360131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sources of variability and systematic error in mouse timing behavior.
    Gallistel CR; King A; McDonald R
    J Exp Psychol Anim Behav Process; 2004 Jan; 30(1):3-16. PubMed ID: 14709111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contextual determinants of temporal control: Behavioral contrast in a free-operant psychophysical procedure.
    da Silva SP; Lattal KA
    Behav Processes; 2006 Feb; 71(2-3):157-63. PubMed ID: 16364564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of timing and classical conditioning.
    Holder MD; Roberts S
    J Exp Psychol Anim Behav Process; 1985 Apr; 11(2):172-93. PubMed ID: 4009120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The behavioral economics of choice and interval timing.
    Jozefowiez J; Staddon JE; Cerutti DT
    Psychol Rev; 2009 Jul; 116(3):519-39. PubMed ID: 19618985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Traveling in time: a time-left analogue for humans.
    Wearden JH
    J Exp Psychol Anim Behav Process; 2002 Apr; 28(2):200-8. PubMed ID: 11987876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fewer peak trials per session facilitate acquisition of peak responding despite elimination of response rate differences.
    Kaiser DH
    Behav Processes; 2009 Jan; 80(1):12-9. PubMed ID: 18793706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Timing behavior in streptozotocin-induced diabetic rats.
    Orduña V; Hong E; Bouzas A
    Behav Brain Res; 2011 Oct; 224(1):189-94. PubMed ID: 21683739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of orbital prefrontal cortex lesions on performance on a progressive ratio schedule: implications for models of inter-temporal choice.
    Kheramin S; Body S; Herrera FM; Bradshaw CM; Szabadi E; Deakin JF; Anderson IM
    Behav Brain Res; 2005 Jan; 156(1):145-52. PubMed ID: 15474659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gestational exposure to methylmercury retards choice in transition in aging rats.
    Newland MC; Reile PA; Langston JL
    Neurotoxicol Teratol; 2004; 26(2):179-94. PubMed ID: 15019952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous timing of multiple intervals: implications of the scalar property.
    Leak TM; Gibbon J
    J Exp Psychol Anim Behav Process; 1995 Jan; 21(1):3-19. PubMed ID: 7844504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of spontaneously hypertensive rats in a peak-interval procedure with gaps.
    Orduña V; García A; Menez M; Hong E; Bouzas A
    Behav Brain Res; 2008 Aug; 191(1):72-6. PubMed ID: 18436313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acquisition versus steady state in the time-left experiment.
    Machado A; Vasconcelos M
    Behav Processes; 2006 Feb; 71(2-3):172-87. PubMed ID: 16343806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fos expression in the prefrontal cortex and ventral striatum after exposure to a free-operant timing schedule.
    Valencia-Torres L; Olarte-Sánchez CM; Body S; Cheung TH; Fone KC; Bradshaw CM; Szabadi E
    Behav Brain Res; 2012 Dec; 235(2):273-9. PubMed ID: 22917527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel behavioral tasks to explore cerebellar temporal processing in milliseconds in rats.
    Yamaguchi K; Sakurai Y
    Behav Brain Res; 2014 Apr; 263():138-43. PubMed ID: 24487009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interval timing accuracy and scalar timing in C57BL/6 mice.
    Buhusi CV; Aziz D; Winslow D; Carter RE; Swearingen JE; Buhusi MC
    Behav Neurosci; 2009 Oct; 123(5):1102-13. PubMed ID: 19824777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.