These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 25660143)

  • 1. Laryngeal muscle activity during nasal high-frequency oscillatory ventilation in nonsedated newborn lambs.
    Hadj-Ahmed MA; Samson N; Nadeau C; Boudaa N; Praud JP
    Neonatology; 2015; 107(3):199-205. PubMed ID: 25660143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of inspiratory laryngeal constrictor muscle activity during nasal neurally adjusted ventilatory assist in newborn lambs.
    Hadj-Ahmed MA; Samson N; Bussières M; Beck J; Praud JP
    J Appl Physiol (1985); 2012 Jul; 113(1):63-70. PubMed ID: 22518828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Inspiratory Pressure Rise Time and Hypoxic or Hypercapnic Breathing on Inspiratory Laryngeal Constrictor Muscle Activity During Nasal Pressure Support Ventilation.
    Carrière V; Cantin D; Nault S; Nadeau C; Samson N; Beck J; Praud JP
    Crit Care Med; 2015 Aug; 43(8):e296-303. PubMed ID: 25985387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laryngeal response to nasal ventilation in nonsedated newborn lambs.
    Moreau-Bussière F; Samson N; St-Hilaire M; Reix P; Lafond JR; Nsegbe E; Praud JP
    J Appl Physiol (1985); 2007 Jun; 102(6):2149-57. PubMed ID: 17332270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cricothyroid muscle electrical activity during respiration and apneas in lambs.
    Samson N; Lafond JR; Moreau-Bussière F; Reix P; Praud JP
    Respir Physiol Neurobiol; 2007 Feb; 155(2):147-55. PubMed ID: 16713757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laryngeal narrowing during nasal ventilation does not originate from bronchopulmonary C-fibers.
    Samson N; Niane L; Nault S; Nadeau C; Praud JP
    Respir Physiol Neurobiol; 2014 Oct; 202():32-4. PubMed ID: 25075590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thyroarytenoid muscle activity during hypocapnic central apneas in awake nonsedated lambs.
    Kianicka I; Leroux JF; Praud JP
    J Appl Physiol (1985); 1994 Mar; 76(3):1262-8. PubMed ID: 8005871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laryngeal and abdominal muscle electrical activity during periodic breathing in nonsedated lambs.
    Kianicka I; Diaz V; Renolleau S; Canet E; Praud JP
    J Appl Physiol (1985); 1998 Feb; 84(2):669-75. PubMed ID: 9475879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active glottal closure during central apneas limits oxygen desaturation in premature lambs.
    Reix P; Arsenault J; Dome V; Fortier PH; Lafond JR; Moreau-Bussiere F; Dorion D; Praud JP
    J Appl Physiol (1985); 2003 May; 94(5):1949-54. PubMed ID: 12524377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active upper airway closure during induced central apneas in lambs is complete at the laryngeal level only.
    Fortier PH; Reix P; Arsenault J; Dorion D; Praud JP
    J Appl Physiol (1985); 2003 Jul; 95(1):97-103. PubMed ID: 12626486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thyroarytenoid muscle electrical activity during spontaneous apneas in preterm lambs.
    Renolleau S; Letourneau P; Niyonsenga T; Praud JP; Gagné B
    Am J Respir Crit Care Med; 1999 May; 159(5 Pt 1):1396-404. PubMed ID: 10228101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of sleep states on laryngeal and abdominal muscle response to upper airway occlusion in lambs.
    Kianicka I; Praud JP
    Pediatr Res; 1997 Jun; 41(6):862-71. PubMed ID: 9167200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nasal high-frequency oscillatory ventilation inhibits gastroesophageal reflux in the neonatal period.
    Cantin D; Djeddi D; Samson N; Nadeau C; Praud JP
    Respir Physiol Neurobiol; 2018 May; 251():28-33. PubMed ID: 29438810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active expiratory glottic closure during permeability pulmonary edema in nonsedated lambs.
    Praud JP; Diaz V; Kianicka I; Dalle D
    Am J Respir Crit Care Med; 1995 Aug; 152(2):732-7. PubMed ID: 7633735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of active laryngeal closure during noninvasive intermittent positive pressure ventilation in nonsedated lambs.
    Roy B; Samson N; Moreau-Bussière F; Ouimet A; Dorion D; Mayer S; Praud JP
    J Appl Physiol (1985); 2008 Nov; 105(5):1406-12. PubMed ID: 18703758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferior pharyngeal constrictor electromyographic activity during permeability pulmonary edema in lambs.
    Diaz V; Kianicka I; Letourneau P; Praud JP
    J Appl Physiol (1985); 1996 Oct; 81(4):1598-604. PubMed ID: 8904575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete glottic closure during central apnea in lambs.
    Lemaire D; Létourneau P; Dorion D; Praud JP
    J Otolaryngol; 1999 Feb; 28(1):13-9. PubMed ID: 10077778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory Effect of Nasal Intermittent Positive Pressure Ventilation on Gastroesophageal Reflux.
    Cantin D; Djeddi D; Carrière V; Samson N; Nault S; Jia WL; Beck J; Praud JP
    PLoS One; 2016; 11(1):e0146742. PubMed ID: 26785264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prolonged active glottic closure after barbiturate-induced respiratory arrest in lambs.
    Praud JP; Kianicka I; Diaz V; Leroux JF; Dalle D
    Respir Physiol; 1996 Jul; 104(2-3):221-9. PubMed ID: 8893368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nasal high-frequency oscillatory ventilation impairs heated humidification: A neonatal bench study.
    Ullrich TL; Czernik C; Bührer C; Schmalisch G; Fischer HS
    Pediatr Pulmonol; 2017 Nov; 52(11):1455-1460. PubMed ID: 28881101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.