These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 25660257)
1. Antibody-integrated and functionalized graphite-encapsulated magnetic beads, produced using ammonia gas plasma technology, for capturing Salmonella. Sakudo A; Chou H; Nagatsu M Bioorg Med Chem Lett; 2015 Mar; 25(5):1012-6. PubMed ID: 25660257 [TBL] [Abstract][Full Text] [Related]
2. Integration of antibody by surface functionalization of graphite-encapsulated magnetic beads using ammonia gas plasma technology for capturing influenza A virus. Sakudo A; Chou H; Ikuta K; Nagatsu M Bioorg Med Chem Lett; 2015 May; 25(9):1876-9. PubMed ID: 25857943 [TBL] [Abstract][Full Text] [Related]
3. Efficient recovery and enrichment of infectious rotavirus using separation with antibody-integrated graphite-encapsulated magnetic nanobeads produced by argon/ammonia gas plasma technology. Yamashiro R; Sakudo A; Nagatsu M Int J Nanomedicine; 2019; 14():1865-1876. PubMed ID: 30880985 [TBL] [Abstract][Full Text] [Related]
4. Capture of dengue viruses using antibody-integrated graphite-encapsulated magnetic beads produced using gas plasma technology. Sakudo A; Viswan A; Chou H; Sasaki T; Ikuta K; Nagatsu M Mol Med Rep; 2016 Jul; 14(1):697-704. PubMed ID: 27221214 [TBL] [Abstract][Full Text] [Related]
5. [Comparison of different magnetic beads for adsorption of pathogenic bacteria]. Li Q; Chen P; Ren C Wei Sheng Yan Jiu; 2012 Mar; 41(2):293-7. PubMed ID: 22611944 [TBL] [Abstract][Full Text] [Related]
6. Capturing and concentrating adenovirus using magnetic anionic nanobeads. Sakudo A; Baba K; Ikuta K Int J Nanomedicine; 2016; 11():1847-57. PubMed ID: 27274228 [TBL] [Abstract][Full Text] [Related]
7. Ultrarapid detection of pathogenic bacteria using a 3D immunomagnetic flow assay. Lee W; Kwon D; Chung B; Jung GY; Au A; Folch A; Jeon S Anal Chem; 2014 Jul; 86(13):6683-8. PubMed ID: 24856003 [TBL] [Abstract][Full Text] [Related]
8. Development of liposome immunoassay for salmonella spp. using immunomagnetic separation and immunoliposome. Shin J; Kim M J Microbiol Biotechnol; 2008 Oct; 18(10):1689-94. PubMed ID: 18955821 [TBL] [Abstract][Full Text] [Related]
9. Design of a core-shell type immuno-magnetic separation system and multiplex PCR for rapid detection of pathogens from food samples. Ozalp VC; Bayramoglu G; Arica MY; Oktem HA Appl Microbiol Biotechnol; 2013 Nov; 97(21):9541-51. PubMed ID: 24048640 [TBL] [Abstract][Full Text] [Related]
10. [Detection of Salmonella, Shigella and Staphylococcus aureus based on quantum dots and immunomagnetic beads]. Li Q; Chen P; Wang J; Zhang S; Yan J Wei Sheng Yan Jiu; 2013 Jul; 42(4):660-3. PubMed ID: 24024384 [TBL] [Abstract][Full Text] [Related]
11. Fourier-transform infrared spectroscopy combined with immunomagnetic separation as a tool to discriminate Salmonella serovars. De Lamo-Castellví S; Männing A; Rodríguez-Saona LE Analyst; 2010 Nov; 135(11):2987-92. PubMed ID: 20877835 [TBL] [Abstract][Full Text] [Related]
12. Analytical methods of antibody surface coverage and orientation on bio-functionalized magnetic beads: application to immunocapture of TNF-α. Laborie E; Le-Minh V; Mai TD; Ammar M; Taverna M; Smadja C Anal Bioanal Chem; 2021 Oct; 413(25):6425-6434. PubMed ID: 34401927 [TBL] [Abstract][Full Text] [Related]
13. In situ DNA amplification with magnetic primers for the electrochemical detection of food pathogens. Lermo A; Campoy S; Barbé J; Hernández S; Alegret S; Pividori MI Biosens Bioelectron; 2007 Apr; 22(9-10):2010-7. PubMed ID: 17055717 [TBL] [Abstract][Full Text] [Related]
14. Real-time PCR method combined with immunomagnetic separation for detecting healthy and heat-injured Salmonella Typhimurium on raw duck wings. Zheng Q; Mikš-Krajnik M; Yang Y; Xu W; Yuk HG Int J Food Microbiol; 2014 Sep; 186():6-13. PubMed ID: 24974274 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and Evaluation of the Immunomagnetic Beads for Separation of the Khosravi M; Gharibi D; Salimi Moghadam S Arch Razi Inst; 2022 Oct; 77(5):1601-1609. PubMed ID: 37123141 [No Abstract] [Full Text] [Related]
17. Evaluation of an automated immunomagnetic separation method for the rapid detection of Salmonella species in poultry environmental samples. Lynch MJ; Leon-Velarde CG; McEwen S; Odumeru JA J Microbiol Methods; 2004 Aug; 58(2):285-8. PubMed ID: 15234527 [TBL] [Abstract][Full Text] [Related]
18. Immunomagnetic Separation of Salmonella with Tailored Magnetic Micro- and Nanocarriers. Pividori MI Methods Mol Biol; 2021; 2182():51-65. PubMed ID: 32894487 [TBL] [Abstract][Full Text] [Related]
19. Comparison of three magnetic bead surface functionalities for RNA extraction and detection. Adams NM; Bordelon H; Wang KK; Albert LE; Wright DW; Haselton FR ACS Appl Mater Interfaces; 2015 Mar; 7(11):6062-9. PubMed ID: 25710198 [TBL] [Abstract][Full Text] [Related]
20. Detection of Salmonella typhimurium in raw meats using in-house prepared monoclonal antibody coated magnetic beads and PCR assay of the fimA gene. Moreira AN; Conceição FR; Conceição Rde C; Ramos RJ; Carvalhal JB; Dellagostin OA; Aleixo JA J Immunoassay Immunochem; 2008; 29(1):58-69. PubMed ID: 18080880 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]