These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 25660306)

  • 1. How to stop or change a motor response: Laplacian and independent component analysis approach.
    Rangel-Gomez M; Knight RT; Krämer UM
    Int J Psychophysiol; 2015 Sep; 97(3):233-44. PubMed ID: 25660306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural Architecture of Selective Stopping Strategies: Distinct Brain Activity Patterns Are Associated with Attentional Capture But Not with Outright Stopping.
    Sebastian A; Rössler K; Wibral M; Mobascher A; Lieb K; Jung P; Tüscher O
    J Neurosci; 2017 Oct; 37(40):9785-9794. PubMed ID: 28887387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological activity underlying inhibitory control processes in normal adults.
    Schmajuk M; Liotti M; Busse L; Woldorff MG
    Neuropsychologia; 2006; 44(3):384-95. PubMed ID: 16095637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural and behavioral correlates of selective stopping: Evidence for a different strategy adoption.
    Sánchez-Carmona AJ; Albert J; Hinojosa JA
    Neuroimage; 2016 Oct; 139():279-293. PubMed ID: 27355436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early attentional processes distinguish selective from global motor inhibitory control: an electrical neuroimaging study.
    Sallard E; Barral J; Chavan CF; Spierer L
    Neuroimage; 2014 Feb; 87():183-9. PubMed ID: 24220039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the lateral prefrontal cortex in inhibitory motor control.
    Krämer UM; Solbakk AK; Funderud I; Løvstad M; Endestad T; Knight RT
    Cortex; 2013 Mar; 49(3):837-49. PubMed ID: 22699024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodal imaging of functional networks and event-related potentials in performance monitoring.
    Huster RJ; Eichele T; Enriquez-Geppert S; Wollbrink A; Kugel H; Konrad C; Pantev C
    Neuroimage; 2011 Jun; 56(3):1588-97. PubMed ID: 21421060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response competition and response inhibition during different choice-discrimination tasks: evidence from ERP measured inside MRI scanner.
    Gonzalez-Rosa JJ; Inuggi A; Blasi V; Cursi M; Annovazzi P; Comi G; Falini A; Leocani L
    Int J Psychophysiol; 2013 Jul; 89(1):37-47. PubMed ID: 23664841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological evidence for different inhibitory mechanisms when stopping or changing a planned response.
    Krämer UM; Knight RT; Münte TF
    J Cogn Neurosci; 2011 Sep; 23(9):2481-93. PubMed ID: 20849230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in unity: The go/no-go and stop signal tasks rely on different mechanisms.
    Raud L; Westerhausen R; Dooley N; Huster RJ
    Neuroimage; 2020 Apr; 210():116582. PubMed ID: 31987997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological signatures of the race model in human primary motor cortex.
    Hughes ME; Fulham WR; Michie PT
    Psychophysiology; 2016 Feb; 53(2):229-36. PubMed ID: 26481459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response planning in word typing: evidence for inhibition.
    Pinet S; Hamamé CM; Longcamp M; Vidal F; Alario FX
    Psychophysiology; 2015 Apr; 52(4):524-31. PubMed ID: 25336325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. When the brain simulates stopping: Neural activity recorded during real and imagined stop-signal tasks.
    González-Villar AJ; Bonilla FM; Carrillo-de-la-Peña MT
    Cogn Affect Behav Neurosci; 2016 Oct; 16(5):825-35. PubMed ID: 27160368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Somato-motor inhibitory processing in humans: a study with MEG and ERP.
    Nakata H; Inui K; Wasaka T; Akatsuka K; Kakigi R
    Eur J Neurosci; 2005 Oct; 22(7):1784-92. PubMed ID: 16197519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prepotent motor activity and inhibitory control demands in different variants of the go/no-go paradigm.
    Wessel JR
    Psychophysiology; 2018 Mar; 55(3):. PubMed ID: 28390090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural aftereffects of errors in a stop-signal task.
    Beyer F; Münte TF; Fischer J; Krämer UM
    Neuropsychologia; 2012 Dec; 50(14):3304-12. PubMed ID: 23063968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks.
    Swick D; Ashley V; Turken U
    Neuroimage; 2011 Jun; 56(3):1655-65. PubMed ID: 21376819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of intact frontostriatal circuits in error processing.
    Ullsperger M; von Cramon DY
    J Cogn Neurosci; 2006 Apr; 18(4):651-64. PubMed ID: 16768367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study on the neural mechanism of inhibition of return by the event-related potential in the Go/NoGo task.
    Tian Y; Yao D
    Biol Psychol; 2008 Oct; 79(2):171-8. PubMed ID: 18524452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Filling the void-enriching the feature space of successful stopping.
    Huster RJ; Schneider S; Lavallee CF; Enriquez-Geppert S; Herrmann CS
    Hum Brain Mapp; 2017 Mar; 38(3):1333-1346. PubMed ID: 27862666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.