These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 25660306)

  • 21. Filling the void-enriching the feature space of successful stopping.
    Huster RJ; Schneider S; Lavallee CF; Enriquez-Geppert S; Herrmann CS
    Hum Brain Mapp; 2017 Mar; 38(3):1333-1346. PubMed ID: 27862666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamics of response-conflict monitoring and individual differences in response control and behavioral control: an electrophysiological investigation using a stop-signal task.
    Stahl J; Gibbons H
    Clin Neurophysiol; 2007 Mar; 118(3):581-96. PubMed ID: 17188565
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Who comes first? The role of the prefrontal and parietal cortex in cognitive control.
    Brass M; Ullsperger M; Knoesche TR; von Cramon DY; Phillips NA
    J Cogn Neurosci; 2005 Sep; 17(9):1367-75. PubMed ID: 16197690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task.
    Schevernels H; Bombeke K; Van der Borght L; Hopf JM; Krebs RM; Boehler CN
    Neuroimage; 2015 Nov; 121():115-25. PubMed ID: 26188262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection?
    Dimoska A; Johnstone SJ; Barry RJ
    Brain Cogn; 2006 Nov; 62(2):98-112. PubMed ID: 16814442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequential neural processes of tactile-visual crossmodal working memory.
    Ohara S; Lenz F; Zhou YD
    Neuroscience; 2006 Apr; 139(1):299-309. PubMed ID: 16324794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plastic modifications within inhibitory control networks induced by practicing a stop-signal task: an electrical neuroimaging study.
    Manuel AL; Bernasconi F; Spierer L
    Cortex; 2013 Apr; 49(4):1141-7. PubMed ID: 23313010
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ERP components associated with successful and unsuccessful stopping in a stop-signal task.
    Kok A; Ramautar JR; De Ruiter MB; Band GP; Ridderinkhof KR
    Psychophysiology; 2004 Jan; 41(1):9-20. PubMed ID: 14692996
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional and effective connectivity of stopping.
    Huster RJ; Plis SM; Lavallee CF; Calhoun VD; Herrmann CS
    Neuroimage; 2014 Jul; 94():120-128. PubMed ID: 24631789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Disentangling deficits in adults with attention-deficit/hyperactivity disorder.
    Bekker EM; Overtoom CC; Kooij JJ; Buitelaar JK; Verbaten MN; Kenemans JL
    Arch Gen Psychiatry; 2005 Oct; 62(10):1129-36. PubMed ID: 16203958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrophysiological explorations of the cause and effect of inhibition of return in a cue-target paradigm.
    Tian Y; Klein RM; Satel J; Xu P; Yao D
    Brain Topogr; 2011 Jun; 24(2):164-82. PubMed ID: 21365310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. It's not too late: the onset of the frontocentral P3 indexes successful response inhibition in the stop-signal paradigm.
    Wessel JR; Aron AR
    Psychophysiology; 2015 Apr; 52(4):472-80. PubMed ID: 25348645
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neural correlates of fast stimulus discrimination and response selection in top-level fencers.
    Di Russo F; Taddei F; Apnile T; Spinelli D
    Neurosci Lett; 2006 Nov; 408(2):113-8. PubMed ID: 17018246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The control of memory retrieval: insights from event-related potentials.
    Werkle-Bergner M; Mecklinger A; Kray J; Meyer P; Düzel E
    Brain Res Cogn Brain Res; 2005 Aug; 24(3):599-614. PubMed ID: 16099369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Response inhibition of children with ADHD in the stop-signal task: an event-related potential study.
    Senderecka M; Grabowska A; Szewczyk J; Gerc K; Chmylak R
    Int J Psychophysiol; 2012 Jul; 85(1):93-105. PubMed ID: 21641941
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improvement in visual search with practice: mapping learning-related changes in neurocognitive stages of processing.
    Clark K; Appelbaum LG; van den Berg B; Mitroff SR; Woldorff MG
    J Neurosci; 2015 Apr; 35(13):5351-9. PubMed ID: 25834059
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fractionating the cognitive control required to bring about a change in task: a dense-sensor event-related potential study.
    Astle DE; Jackson GM; Swainson R
    J Cogn Neurosci; 2008 Feb; 20(2):255-67. PubMed ID: 18275333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatiotemporal characterization of response inhibition.
    Albert J; López-Martín S; Hinojosa JA; Carretié L
    Neuroimage; 2013 Aug; 76():272-81. PubMed ID: 23523776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterizing individual differences in reward sensitivity from the brain networks involved in response inhibition.
    Fuentes-Claramonte P; Ávila C; Rodríguez-Pujadas A; Costumero V; Ventura-Campos N; Bustamante JC; Rosell-Negre P; Barrós-Loscertales A
    Neuroimage; 2016 Jan; 124(Pt A):287-299. PubMed ID: 26343318
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Brain potentials related to self-generated and external information used for performance monitoring.
    Müller SV; Möller J; Rodriguez-Fornells A; Münte TF
    Clin Neurophysiol; 2005 Jan; 116(1):63-74. PubMed ID: 15589185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.