These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25660315)

  • 1. Guided ion beam and computational studies of the decomposition of a model thiourea protein cross-linker.
    Wang R; Yang B; Wu RR; Rodgers MT; Schäfer M; Armentrout PB
    J Phys Chem B; 2015 Mar; 119(9):3727-42. PubMed ID: 25660315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics and mechanisms for decomposition of protonated glycine and its protonated dimer.
    Armentrout PB; Heaton AL; Ye SJ
    J Phys Chem A; 2011 Oct; 115(41):11144-55. PubMed ID: 21506545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics and Reaction Mechanisms of Decomposition of the Simplest Protonated Tripeptide, Triglycine: A Guided Ion Beam and Computational Study.
    Mookherjee A; Van Stipdonk MJ; Armentrout PB
    J Am Soc Mass Spectrom; 2017 Apr; 28(4):739-757. PubMed ID: 28197927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics and mechanism of protonated cysteine decomposition: a guided ion beam and computational study.
    Armentrout PB; Stennett EM
    J Am Soc Mass Spectrom; 2014 Apr; 25(4):512-23. PubMed ID: 24496599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics and mechanisms of protonated diglycine decomposition: a guided ion beam study.
    Armentrout PB; Heaton AL
    J Am Soc Mass Spectrom; 2012 Apr; 23(4):632-43. PubMed ID: 21952768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics and Reaction Mechanisms for Decomposition of a Simple Protonated Tripeptide, H
    Mookherjee A; Armentrout PB
    J Am Soc Mass Spectrom; 2022 Feb; 33(2):355-368. PubMed ID: 34981933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics and Reaction Mechanisms for Decomposition of a Simple Protonated Tripeptide, H
    Mookherjee A; Armentrout PB
    J Am Soc Mass Spectrom; 2019 Jun; 30(6):1013-1027. PubMed ID: 30850973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Threshold collision-induced dissociation and theoretical studies of hydrated Fe(II): binding energies and Coulombic barrier heights.
    Hofstetter TE; Armentrout PB
    J Phys Chem A; 2013 Feb; 117(6):1110-23. PubMed ID: 22812673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and theoretical studies of potassium cation interactions with the acidic amino acids and their amide derivatives.
    Heaton AL; Armentrout PB
    J Phys Chem B; 2008 Sep; 112(38):12056-65. PubMed ID: 18729510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics and mechanism of the deamidation of sodium-bound asparagine.
    Heaton AL; Armentrout PB
    J Am Chem Soc; 2008 Aug; 130(31):10227-32. PubMed ID: 18613670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and theoretical studies of sodium cation complexes of the deamidation and dehydration products of asparagine, glutamine, aspartic acid, and glutamic acid.
    Heaton AL; Ye SJ; Armentrout PB
    J Phys Chem A; 2008 Apr; 112(15):3328-38. PubMed ID: 18355065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics and mechanism of protonated asparagine decomposition.
    Heaton AL; Armentrout PB
    J Am Soc Mass Spectrom; 2009 May; 20(5):852-66. PubMed ID: 19201618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and theoretical studies of sodium cation interactions with the acidic amino acids and their amide derivatives.
    Heaton AL; Moision RM; Armentrout PB
    J Phys Chem A; 2008 Apr; 112(15):3319-27. PubMed ID: 18355061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental and theoretical study of alkali metal cation interactions with cysteine.
    Armentrout PB; Armentrout EI; Clark AA; Cooper TE; Stennett EM; Carl DR
    J Phys Chem B; 2010 Mar; 114(11):3927-37. PubMed ID: 20184310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal cation dependence of interactions with amino acids: bond energies of Rb+ and Cs+ to Met, Phe, Tyr, and Trp.
    Armentrout PB; Yang B; Rodgers MT
    J Phys Chem B; 2013 Apr; 117(14):3771-81. PubMed ID: 23514190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fragmentation behavior of a thiourea-based reagent for protein structure analysis by collision-induced dissociative chemical cross-linking.
    Müller MQ; Dreiocker F; Ihling CH; Schäfer M; Sinz A
    J Mass Spectrom; 2010 Aug; 45(8):880-91. PubMed ID: 20607845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protonated Asparaginyl-Alanine Decomposition: a TCID, SORI-CID, and Computational Analysis.
    Boles GC; Wu RR; Rodgers MT; Armentrout PB
    J Am Soc Mass Spectrom; 2018 Dec; 29(12):2341-2359. PubMed ID: 30159675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The special five-membered ring of proline: An experimental and theoretical investigation of alkali metal cation interactions with proline and its four- and six-membered ring analogues.
    Moision RM; Armentrout PB
    J Phys Chem A; 2006 Mar; 110(11):3933-46. PubMed ID: 16539415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal cation dependence of interactions with amino acids: bond energies of Rb+ to Gly, Ser, Thr, and Pro.
    Bowman VN; Heaton AL; Armentrout PB
    J Phys Chem B; 2010 Mar; 114(11):4107-14. PubMed ID: 20184306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guided ion beam studies of the collision-induced dissociation of CuOH+(H2O)n (n = 1-4): comprehensive thermodynamic data for copper ion hydration.
    Sweeney AF; Armentrout PB
    J Phys Chem A; 2014 Nov; 118(44):10210-22. PubMed ID: 25302573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.