These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25660355)

  • 1. LCA-based optimization of wood utilization under special consideration of a cascading use of wood.
    Höglmeier K; Steubing B; Weber-Blaschke G; Richter K
    J Environ Manage; 2015 Apr; 152():158-70. PubMed ID: 25660355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eco-efficiency analysis of recycling recovered solid wood from construction into laminated timber products.
    Risse M; Weber-Blaschke G; Richter K
    Sci Total Environ; 2019 Apr; 661():107-119. PubMed ID: 30665127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic accounting of greenhouse gas emissions from cascading utilisation of wood waste.
    Faraca G; Tonini D; Astrup TF
    Sci Total Environ; 2019 Feb; 651(Pt 2):2689-2700. PubMed ID: 30463124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental impacts of various biomass supply chains for the provision of raw wood in Bavaria, Germany, with focus on climate change.
    Klein D; Wolf C; Schulz C; Weber-Blaschke G
    Sci Total Environ; 2016 Jan; 539():45-60. PubMed ID: 26352646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life Cycle Assessment of Plywood Manufacturing Process in China.
    Jia L; Chu J; Ma L; Qi X; Kumar A
    Int J Environ Res Public Health; 2019 Jun; 16(11):. PubMed ID: 31181714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental effects of shifts in a regional heating mix through variations in the utilization of solid biofuels.
    Wolf C; Klein D; Richter K; Weber-Blaschke G
    J Environ Manage; 2016 Jul; 177():177-91. PubMed ID: 27100330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental impacts of organic and conventional agricultural products--are the differences captured by life cycle assessment?
    Meier MS; Stoessel F; Jungbluth N; Juraske R; Schader C; Stolze M
    J Environ Manage; 2015 Feb; 149():193-208. PubMed ID: 25463583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the global warming potential of wooden products from the furniture sector to improve their ecodesign.
    González-García S; Gasol CM; Lozano RG; Moreira MT; Gabarrell X; Rieradevall i Pons J; Feijoo G
    Sci Total Environ; 2011 Dec; 410-411():16-25. PubMed ID: 22000917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reusing exterior wall framing systems: A cradle-to-cradle comparative life cycle assessment.
    Cruz Rios F; Grau D; Chong WK
    Waste Manag; 2019 Jul; 94():120-135. PubMed ID: 31279388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective.
    Evangelisti S; Tagliaferri C; Clift R; Lettieri P; Taylor R; Chapman C
    Waste Manag; 2015 Sep; 43():485-96. PubMed ID: 26116008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of forest management systems on the environmental impacts for Douglas-fir production in France.
    González-García S; Bonnesoeur V; Pizzi A; Feijoo G; Moreira MT
    Sci Total Environ; 2013 Sep; 461-462():681-92. PubMed ID: 23770549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Innovations in papermaking: an LCA of printing and writing paper from conventional and high yield pulp.
    Manda BM; Blok K; Patel MK
    Sci Total Environ; 2012 Nov; 439():307-20. PubMed ID: 23089556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling cumulative effects in life cycle assessment: the case of fertilizer in wheat production contributing to the global warming potential.
    Laratte B; Guillaume B; Kim J; Birregah B
    Sci Total Environ; 2014 May; 481():588-95. PubMed ID: 24631622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is enhanced biodiversity protection conflicting with ambitious bioenergy targets in eastern Finland?
    den Herder M; Kurttila M; Leskinen P; Lindner M; Haatanen A; Sironen S; Salminen O; Juusti V; Holma A
    J Environ Manage; 2017 Feb; 187():54-62. PubMed ID: 27883939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An optimization method for energy structures based on life cycle assessment and its application to the power grid in China.
    Ding N; Pan J; Liu J; Yang J
    J Environ Manage; 2019 May; 238():18-24. PubMed ID: 30851557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life cycle impacts of ethanol production from spruce wood chips under high-gravity conditions.
    Janssen M; Xiros C; Tillman AM
    Biotechnol Biofuels; 2016; 9():53. PubMed ID: 26949414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eco-innovation of a wooden childhood furniture set: an example of environmental solutions in the wood sector.
    González-García S; García Lozano R; Moreira MT; Gabarrell X; Rieradevall i Pons J; Feijoo G; Murphy RJ
    Sci Total Environ; 2012 Jun; 426():318-26. PubMed ID: 22542234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the environmental impact of an integrated human/industrial-natural system using life cycle assessment; a case study on a forest and wood processing chain.
    Schaubroeck T; Alvarenga RA; Verheyen K; Muys B; Dewulf J
    Environ Sci Technol; 2013; 47(23):13578-86. PubMed ID: 24195778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle assessment of transparent wood production using emerging technologies and strategic scale-up framework.
    Rai R; Ranjan R; Dhar P
    Sci Total Environ; 2022 Nov; 846():157301. PubMed ID: 35839879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model.
    Liang S; Zhang T; Xu Y
    Waste Manag; 2012 Mar; 32(3):603-12. PubMed ID: 22100716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.