BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25660508)

  • 21. Fluorescent assay for acetylcholinesterase activity and inhibitor screening based on lanthanide organic/inorganic hybrid materials.
    Zhang B; Wang Y; Wu D; Zhao Q; Chen Y; Li Y; Sun J; Yang X
    Anal Methods; 2024 Jan; 16(2):314-321. PubMed ID: 38116865
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Affinity binding-guided fluorescent nanobiosensor for acetylcholinesterase inhibitors via distance modulation between the fluorophore and metallic nanoparticle.
    Zhang Y; Hei T; Cai Y; Gao Q; Zhang Q
    Anal Chem; 2012 Mar; 84(6):2830-6. PubMed ID: 22339669
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thiocholine mediated stabilization of in situ produced CdS quantum dots: application for the detection of acetylcholinesterase activity and inhibitors.
    Garai-Ibabe G; Saa L; Pavlov V
    Analyst; 2014 Jan; 139(1):280-4. PubMed ID: 24225492
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resurfaced fluorescent protein as a sensing platform for label-free detection of copper(II) ion and acetylcholinesterase activity.
    Lei C; Wang Z; Nie Z; Deng H; Hu H; Huang Y; Yao S
    Anal Chem; 2015 Feb; 87(3):1974-80. PubMed ID: 25560517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glutathione regulation-based dual-functional upconversion sensing-platform for acetylcholinesterase activity and cadmium ions.
    Fang A; Chen H; Li H; Liu M; Zhang Y; Yao S
    Biosens Bioelectron; 2017 Jan; 87():545-551. PubMed ID: 27611473
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic Device for Coulometric Detection of Organophosphate Pesticides.
    Wang J; Satake T; Suzuki H
    Anal Sci; 2015; 31(7):591-5. PubMed ID: 26165279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical and fluorescent dual-mode sensor of acetylcholinesterase activity and inhibition based on MnO
    Kim SG; Lee HK; Subba SH; Oh MH; Lee G; Park SY
    Anal Chim Acta; 2023 May; 1257():341171. PubMed ID: 37062569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical Detection of Enzymatic Activity and Inhibitors on Non-Covalently Functionalized Fluorescent Graphene Oxide.
    Kang TW; Jeon SJ; Kim HI; Park JH; Yim D; Lee HR; Ju JM; Kim MJ; Kim JH
    ACS Nano; 2016 May; 10(5):5346-53. PubMed ID: 27136042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoplasmonic biosensors for multicolor visual analysis of acetylcholinesterase activity and drug inhibitor screening in point-of-care testing.
    Li Y; Chen L; Li CY; Zhang J; Zhao Y; Yang YH; Yang T
    Biosens Bioelectron; 2024 Mar; 247():115912. PubMed ID: 38096721
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continuous colorimetric assay for acetylcholinesterase and inhibitor screening with gold nanoparticles.
    Wang M; Gu X; Zhang G; Zhang D; Zhu D
    Langmuir; 2009 Feb; 25(4):2504-7. PubMed ID: 19154124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biphasic photoelectrochemical sensing strategy based on in situ formation of CdS quantum dots for highly sensitive detection of acetylcholinesterase activity and inhibition.
    Hou T; Zhang L; Sun X; Li F
    Biosens Bioelectron; 2016 Jan; 75():359-64. PubMed ID: 26339933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A fluorescent aptasensor for amplified label-free detection of adenosine triphosphate based on core-shell Ag@SiO2 nanoparticles.
    Song Q; Peng M; Wang L; He D; Ouyang J
    Biosens Bioelectron; 2016 Mar; 77():237-41. PubMed ID: 26409024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal carbonyl-gold nanoparticle conjugates for highly sensitive SERS detection of organophosphorus pesticides.
    Tan MJ; Hong ZY; Chang MH; Liu CC; Cheng HF; Loh XJ; Chen CH; Liao CD; Kong KV
    Biosens Bioelectron; 2017 Oct; 96():167-172. PubMed ID: 28494368
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Paper-based amperometric sensor for determination of acetylcholinesterase using screen-printed graphene electrode.
    Panraksa Y; Siangproh W; Khampieng T; Chailapakul O; Apilux A
    Talanta; 2018 Feb; 178():1017-1023. PubMed ID: 29136790
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactions of human acetylcholinesterase with phenyl valerate and acetylthiocholine: Thiocholine as an enhancer of phenyl valerate esterase activity.
    Estévez J; Terol M; Sogorb MÁ; Vilanova E
    Chem Biol Interact; 2022 Jan; 351():109764. PubMed ID: 34875277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A ratiometric fluorescence strategy based on inner filter effect for Cu
    Li Y; Liang H; Lin B; Yu Y; Wang Y; Zhang L; Cao Y; Guo M
    Mikrochim Acta; 2021 Oct; 188(11):385. PubMed ID: 34664146
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface-enhanced Raman scattering detection of cholinesterase inhibitors.
    Liron Z; Zifman A; Heleg-Shabtai V
    Anal Chim Acta; 2011 Oct; 703(2):234-8. PubMed ID: 21889639
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulated growth of nanoparticles. Application for sensing nerve gases.
    Virel A; Saa L; Pavlov V
    Anal Chem; 2009 Jan; 81(1):268-72. PubMed ID: 19049371
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of methods used for the determination of cholinesterase activity in whole blood.
    Naik RS; Doctor BP; Saxena A
    Chem Biol Interact; 2008 Sep; 175(1-3):298-302. PubMed ID: 18555980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulus Response of GQD-Sensitized Tb/GMP ICP Nanoparticles with Dual-Responsive Ratiometric Fluorescence: Toward Point-of-Use Analysis of Acetylcholinesterase and Organophosphorus Pesticide Poisoning with Acetylcholinesterase as a Biomarker.
    Ma R; Xu M; Liu C; Shi G; Deng J; Zhou T
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42119-42128. PubMed ID: 32805836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.