These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 25660511)

  • 1. Label-free colorimetric detection of biothiols utilizing SAM and unmodified Au nanoparticles.
    Li ZJ; Zheng XJ; Zhang L; Liang RP; Li ZM; Qiu JD
    Biosens Bioelectron; 2015 Jun; 68():668-674. PubMed ID: 25660511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hg2+-mediated aggregation of gold nanoparticles for colorimetric screening of biothiols.
    Xu H; Wang Y; Huang X; Li Y; Zhang H; Zhong X
    Analyst; 2012 Feb; 137(4):924-31. PubMed ID: 22179771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly sensitive and selective colorimetric detection of glutathione based on Ag [I] ion-3,3',5,5'-tetramethylbenzidine (TMB).
    Ni P; Sun Y; Dai H; Hu J; Jiang S; Wang Y; Li Z
    Biosens Bioelectron; 2015 Jan; 63():47-52. PubMed ID: 25058938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-aggregation of gold nanoparticle-based colorimetric sensor for glutathione with excellent selectivity and sensitivity.
    Li Y; Wu P; Xu H; Zhang H; Zhong X
    Analyst; 2011 Jan; 136(1):196-200. PubMed ID: 20931106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free colorimetric detection of biological thiols based on target-triggered inhibition of photoinduced formation of AuNPs.
    Jung YL; Park JH; Kim MI; Park HG
    Nanotechnology; 2016 Feb; 27(5):055501. PubMed ID: 26671249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive and selective detection of biothiols based on target-induced agglomeration of silver nanoclusters.
    Zhang N; Qu F; Luo HQ; Li NB
    Biosens Bioelectron; 2013 Apr; 42():214-8. PubMed ID: 23208088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fluorescein-gold nanoparticles probe based on inner filter effect and aggregation for sensing of biothiols.
    Qin X; Yuan C; Chen Y; Wang Y
    J Photochem Photobiol B; 2020 Sep; 210():111986. PubMed ID: 32771912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma.
    Shi Y; Pan Y; Zhang H; Zhang Z; Li MJ; Yi C; Yang M
    Biosens Bioelectron; 2014 Jun; 56():39-45. PubMed ID: 24462829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Etching and anti-etching strategy for sensitive colorimetric sensing of H
    Hou W; Liu X; Lu Q; Liu M; Zhang Y; Yao S
    Colloids Surf B Biointerfaces; 2018 Feb; 162():118-125. PubMed ID: 29190462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colorimetric sensor for cysteine in human urine based on novel gold nanoparticles.
    Zhang Y; Jiang J; Li M; Gao P; Zhou Y; Zhang G; Shuang S; Dong C
    Talanta; 2016 Dec; 161():520-527. PubMed ID: 27769441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biothiols as chelators for preparation of N-(aminobutyl)-N-(ethylisoluminol)/Cu(2+) complexes bifunctionalized gold nanoparticles and sensitive sensing of pyrophosphate ion.
    Li F; Liu Y; Zhuang M; Zhang H; Liu X; Cui H
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18104-11. PubMed ID: 25275558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fluorescent probe for the efficient discrimination of Cys, Hcy and GSH based on different cascade reactions.
    Li Y; Liu W; Zhang P; Zhang H; Wu J; Ge J; Wang P
    Biosens Bioelectron; 2017 Apr; 90():117-124. PubMed ID: 27886598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sensitive and selective sensor for biothiols based on the turn-on fluorescence of the Fe-MIL-88 metal-organic frameworks-hydrogen peroxide system.
    Sun ZJ; Jiang JZ; Li YF
    Analyst; 2015 Dec; 140(24):8201-8. PubMed ID: 26568205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colorimetric sensing of selenocystine using gold nanoparticles.
    Liu L; Wang X; Yang J; Bai Y
    Anal Biochem; 2017 Oct; 535():19-24. PubMed ID: 28739132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective optical sensing of biothiols with Ellman's reagent: 5,5'-Dithio-bis(2-nitrobenzoic acid)-modified gold nanoparticles.
    Güçlü K; Ozyürek M; Güngör N; Baki S; Apak R
    Anal Chim Acta; 2013 Sep; 794():90-8. PubMed ID: 23972980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Dual-Readout Method for Biothiols Detection Based on the NSET of Nitrogen-Doped Carbon Quantum Dots-Au Nanoparticles System.
    Fu X; Gu D; Zhao S; Zhou N; Zhang H
    J Fluoresc; 2017 Sep; 27(5):1597-1605. PubMed ID: 28401410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel colorimetric and fluorometric probe for biothiols based on MnO
    Xue H; Yu M; He K; Liu Y; Cao Y; Shui Y; Li J; Farooq M; Wang L
    Anal Chim Acta; 2020 Aug; 1127():39-48. PubMed ID: 32800136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes.
    Li L; Li B
    Analyst; 2009 Jul; 134(7):1361-5. PubMed ID: 19562202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A colorimetric sensor array for detection and discrimination of biothiols based on aggregation of gold nanoparticles.
    Ghasemi F; Hormozi-Nezhad MR; Mahmoudi M
    Anal Chim Acta; 2015 Jul; 882():58-67. PubMed ID: 26043092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A reversible competition colorimetric assay for the detection of biothiols based on ruthenium-containing complex.
    Hao Y; Xiong D; Wang L; Chen W; Zhou B; Liu YN
    Talanta; 2013 Oct; 115():253-7. PubMed ID: 24054588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.