These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 25660520)

  • 1. Dysprosium sorption by polymeric composite bead: robust parametric optimization using Taguchi method.
    Yadav KK; Dasgupta K; Singh DK; Varshney L; Singh H
    J Chromatogr A; 2015 Mar; 1384():37-43. PubMed ID: 25660520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of americium from aqueous nitrate solutions by sorption onto PC88A-impregnated macroporous polymeric beads.
    Pathak SK; Tripathi SC; Singh KK; Mahtele AK; Kumar M; Gandhi PM
    J Hazard Mater; 2014 Aug; 278():464-73. PubMed ID: 24997262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a novel chitosan polymer-based adsorbent for the removal of chromium (III) in aqueous solutions.
    Zuo X; Balasubramanian R
    Carbohydr Polym; 2013 Feb; 92(2):2181-6. PubMed ID: 23399274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using chemometric models to predict the biosorption of low levels of dysprosium by Euglena gracilis.
    Lewis A; Guéguen C
    Environ Sci Pollut Res Int; 2022 Aug; 29(39):58936-58949. PubMed ID: 35377126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute dysprosium toxicity to Daphnia pulex and Hyalella azteca and development of the biotic ligand approach.
    Vukov O; Smith DS; McGeer JC
    Aquat Toxicol; 2016 Jan; 170():142-151. PubMed ID: 26655658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and equilibrium studies on the recovery of praseodymium (III), dysprosium (III) and yttrium (III) using acidic cation exchange resin.
    Masry BA; Abu Elgoud EM; Rizk SE
    BMC Chem; 2022 May; 16(1):37. PubMed ID: 35614500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid.
    Rahmani-Sani A; Hosseini-Bandegharaei A; Hosseini SH; Kharghani K; Zarei H; Rastegar A
    J Hazard Mater; 2015 Apr; 286():152-63. PubMed ID: 25576783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient sorption of Cu(2+) by composite chelating sorbents based on potato starch-graft-polyamidoxime embedded in chitosan beads.
    Dragan ES; Apopei Loghin DF; Cocarta AI
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16577-92. PubMed ID: 25191990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution separation of neodymium and dysprosium ions utilizing extractant-impregnated graft-type particles.
    Uchiyama S; Sasaki T; Ishihara R; Fujiwara K; Sugo T; Umeno D; Saito K
    J Chromatogr A; 2018 Jan; 1533():10-16. PubMed ID: 29276081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cr(III)-imprinted polymeric beads: Sorption and preconcentration studies.
    Birlik E; Ersöz A; Açikkalp E; Denizli A; Say R
    J Hazard Mater; 2007 Feb; 140(1-2):110-6. PubMed ID: 17074437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption of malachite green on chitosan bead.
    Bekçi Z; Ozveri C; Seki Y; Yurdakoç K
    J Hazard Mater; 2008 Jun; 154(1-3):254-61. PubMed ID: 18022317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Which is better for optimizing the biosorption process of lead - central composite design or the Taguchi technique?
    Azari A; Mesdaghinia A; Ghanizadeh G; Masoumbeigi H; Pirsaheb M; Ghafari HR; Khosravi T; Sharafi K
    Water Sci Technol; 2016 Sep; 74(6):1446-1456. PubMed ID: 27685974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layered double hydroxide-alginate/polyvinyl alcohol beads: fabrication and phosphate removal from aqueous solution.
    Kim Phuong NT
    Environ Technol; 2014; 35(21-24):2829-36. PubMed ID: 25176487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of hydrophobic micro-organic pollutants from municipal wastewater treatment plant effluents by sorption onto synthetic polymeric adsorbents: batch sorption experiments.
    Muhandiki VS; Shimizu Y; Adou YA; Matsui S
    Environ Technol; 2007 Apr; 28(4):415-24. PubMed ID: 17500316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of metal organic frameworks/ polyvinyl alcohol cryogel and their application in extraction of non-steroidal anti-inflammatory drugs in water samples.
    Wang Y; Zhang Y; Cui J; Li S; Yuan M; Wang T; Hu Q; Hou X
    Anal Chim Acta; 2018 Aug; 1022():45-52. PubMed ID: 29729737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective removal for Pb2+ in aqueous environment by using novel macroreticular PVA beads.
    Zhang Y; Li Y; Li X; Yang L; Bai X; Ye Z; Zhou L; Wang L
    J Hazard Mater; 2010 Sep; 181(1-3):898-907. PubMed ID: 20566241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of Silica/polyvinyl imidazole/H
    Ettehadi Gargari J; Sid Kalal H; Shakeri A; Khanchi A
    J Colloid Interface Sci; 2017 Nov; 505():745-755. PubMed ID: 28662477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics and thermodynamics of Cu(II) biosorption on to a novel magnetic chitosan composite bead.
    Chen Y; Hu J; Wang J
    Environ Technol; 2012; 33(19-21):2345-51. PubMed ID: 23393976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response surface approach to optimize the removal of the critical raw material dysprosium from water through living seaweeds.
    Ferreira N; Fabre E; Henriques B; Viana T; Costa M; Pinto J; Tavares D; Carvalho L; Pinheiro-Torres J; Pereira E
    J Environ Manage; 2021 Dec; 300():113697. PubMed ID: 34543961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parameter optimization of the fungicide (Vapam) sorption onto soil modified with clinoptilolite by Taguchi method.
    Azizi SN; Asemi N
    J Environ Sci Health B; 2010 Nov; 45(8):766-73. PubMed ID: 20967667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.