These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25660534)

  • 1. Effects of acidic deposition on in-lake phosphorus availability: a lesson from lakes recovering from acidification.
    Kopáček J; Hejzlar J; Kaňa J; Norton SA; Stuchlík E
    Environ Sci Technol; 2015 Mar; 49(5):2895-903. PubMed ID: 25660534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns of nutrient dynamics in Adirondack lakes recovering from acid deposition.
    Gerson JR; Driscoll CT; Roy KM
    Ecol Appl; 2016 Sep; 26(6):1758-1770. PubMed ID: 27755709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increases in dissolved organic carbon accelerate loss of toxic Al in Adirondack lakes recovering from acidification.
    Lawrence GB; Dukett JE; Houck N; Snyder P; Capone S
    Environ Sci Technol; 2013 Jul; 47(13):7095-100. PubMed ID: 23751119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does road salting confound the recovery of the microcrustacean community in an acidified lake?
    Jensen TC; Meland S; Schartau AK; Walseng B
    Sci Total Environ; 2014 Apr; 478():36-47. PubMed ID: 24530583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trends in aluminium export from a mountainous area to surface waters, from deglaciation to the recent: effects of vegetation and soil development, atmospheric acidification, and nitrogen-saturation.
    Kopácek J; Hejzlar J; Kana J; Norton SA; Porcal P; Turek J
    J Inorg Biochem; 2009 Nov; 103(11):1439-48. PubMed ID: 19793616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forest die-back modified plankton recovery from acidic stress.
    Vrba J; Kopáček J; Fott J; Nedbalová L
    Ambio; 2014 Mar; 43(2):207-17. PubMed ID: 23729296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of acid deposition on watershed ecosystems of national parks in the great lakes basin.
    Stottlemyer R; Rutkowski D; Toczydlowski D
    Environ Monit Assess; 1989 Apr; 12(1):65. PubMed ID: 24249065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speciation of Al, Fe, and P in recent sediment from three lakes in Maine, USA.
    Norton SA; Coolidge K; Amirbahman A; Bouchard R; Kopácek J; Reinhardt R
    Sci Total Environ; 2008 Oct; 404(2-3):276-83. PubMed ID: 18440053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural inactivation of phosphorus by aluminum in atmospherically acidified water bodies.
    Kopácek J; Ulrich KU; Hejzlar J; Borovec J; Stuchlik E
    Water Res; 2001 Nov; 35(16):3783-90. PubMed ID: 12230160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diverse effects of accelerating climate change on chemical recovery of alpine lakes from acidic deposition in soil-rich versus scree-rich catchments.
    Kopáček J; Kaňa J; Porcal P; Stuchlík E
    Environ Pollut; 2021 Sep; 284():117522. PubMed ID: 34261223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sediment geochemistry of Al, Fe, and P for two historically acidic, oligotrophic Maine lakes.
    Wilson TA; Norton SA; Lake BA; Amirbahman A
    Sci Total Environ; 2008 Oct; 404(2-3):269-75. PubMed ID: 18760448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreased DOC concentrations in soil water in forested areas in southern Sweden during 1987-2008.
    Löfgren S; Zetterberg T
    Sci Total Environ; 2011 Apr; 409(10):1916-26. PubMed ID: 21377191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for multiple potential drivers of increased phosphorus in high-elevation lakes.
    Scholz J; Brahney J
    Sci Total Environ; 2022 Jun; 825():153939. PubMed ID: 35189218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils.
    Park JH; Bolan N; Megharaj M; Naidu R
    Sci Total Environ; 2011 Jan; 409(4):853-60. PubMed ID: 21130488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterns and trends in lake concentrations of dissolved organic carbon in a landscape recovering from environmental degradation and widespread acidification.
    Hall LJ; Emilson EJS; Edwards B; Watmough SA
    Sci Total Environ; 2021 Apr; 765():142679. PubMed ID: 33077226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term trends and spatial variability in nitrate leaching from alpine catchment-lake ecosystems in the Tatra Mountains (Slovakia-Poland).
    Kopácek J; Stuchlík E; Wright RF
    Environ Pollut; 2005 Jul; 136(1):89-101. PubMed ID: 15809111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acidification of soil-water in low base-saturated sand soils of the superior uplands under acid and normal precipitation.
    Harris AR
    Environ Monit Assess; 1989 Apr; 12(1):61. PubMed ID: 24249061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting acid neutralizing capacity in the Adirondack region of New York: a solute mass balance approach.
    Ito M; Mitchell MJ; Driscoll CT; Roy KM
    Environ Sci Technol; 2005 Jun; 39(11):4076-81. PubMed ID: 15984785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of catchment area and nutrient deposition regime on phytoplankton functionality in alpine lakes.
    Jacquemin C; Bertrand C; Franquet E; Mounier S; Misson B; Oursel B; Cavalli L
    Sci Total Environ; 2019 Jul; 674():114-127. PubMed ID: 31004889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate Change Increasing Calcium and Magnesium Leaching from Granitic Alpine Catchments.
    Kopáček J; Kaňa J; Bičárová S; Fernandez IJ; Hejzlar J; Kahounová M; Norton SA; Stuchlík E
    Environ Sci Technol; 2017 Jan; 51(1):159-166. PubMed ID: 27997122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.