These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 25660632)

  • 1. Variation in thermal tolerance of North American ants.
    Verble-Pearson RM; Gifford ME; Yanoviak SP
    J Therm Biol; 2015 Feb; 48():65-8. PubMed ID: 25660632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae).
    Baudier KM; Mudd AE; Erickson SC; O'Donnell S
    J Anim Ecol; 2015 Sep; 84(5):1322-30. PubMed ID: 26072696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community.
    Kaspari M; Clay NA; Lucas J; Yanoviak SP; Kay A
    Glob Chang Biol; 2015 Mar; 21(3):1092-102. PubMed ID: 25242246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can behaviour and physiology mitigate effects of warming on ectotherms? A test in urban ants.
    Youngsteadt E; Prado SG; Keleher KJ; Kirchner M
    J Anim Ecol; 2023 Mar; 92(3):568-579. PubMed ID: 36642830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change.
    Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS
    J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of nest surface temperatures and the brain in influencing ant metabolic rates.
    Andrew NR; Ghaedi B; Groenewald B
    J Therm Biol; 2016 Aug; 60():132-9. PubMed ID: 27503725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex body size differences in thermal tolerance among army ant workers (Eciton burchellii parvispinum).
    Baudier K; O'Donnell S
    J Therm Biol; 2018 Dec; 78():277-280. PubMed ID: 30509648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Thermal Breadth of Nylanderia fulva (Hymenoptera: Formicidae) Is Narrower Than That of Solenopsis invicta at Three Thermal Ramping Rates: 1.0, 0.12, and 0.06°C min-1.
    Bentley MT; Hahn DA; Oi FM
    Environ Entomol; 2016 Aug; 45(4):1058-62. PubMed ID: 27252409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal plasticity of thermal tolerance in ants.
    Bujan J; Roeder KA; Yanoviak SP; Kaspari M
    Ecology; 2020 Jun; 101(6):e03051. PubMed ID: 32239508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutrition modifies critical thermal maximum of a dominant canopy ant.
    Bujan J; Kaspari M
    J Insect Physiol; 2017 Oct; 102():1-6. PubMed ID: 28830761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remarkable insensitivity of acorn ant morphology to temperature decouples the evolution of physiological tolerance from body size under urban heat islands.
    Yilmaz AR; Chick LD; Perez A; Strickler SA; Vaughn S; Martin RA; Diamond SE
    J Therm Biol; 2019 Oct; 85():102426. PubMed ID: 31657738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using physiology to predict the responses of ants to climatic warming.
    Diamond SE; Penick CA; Pelini SL; Ellison AM; Gotelli NJ; Sanders NJ; Dunn RR
    Integr Comp Biol; 2013 Dec; 53(6):965-74. PubMed ID: 23892370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal constraints on foraging of tropical canopy ants.
    Spicer ME; Stark AY; Adams BJ; Kneale R; Kaspari M; Yanoviak SP
    Oecologia; 2017 Apr; 183(4):1007-1017. PubMed ID: 28132105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of constant and diel-fluctuating temperature acclimation on the thermal tolerance, swimming capacity, specific dynamic action and growth performance of juvenile Chinese bream.
    Peng J; Cao ZD; Fu SJ
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Oct; 176():32-40. PubMed ID: 25026540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upward ant distribution shift corresponds with minimum, not maximum, temperature tolerance.
    Warren RJ; Chick L
    Glob Chang Biol; 2013 Jul; 19(7):2082-8. PubMed ID: 23504958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acclimation effects on critical and lethal thermal limits of workers of the Argentine ant, Linepithema humile.
    Jumbam KR; Jackson S; Terblanche JS; McGeoch MA; Chown SL
    J Insect Physiol; 2008 Jun; 54(6):1008-14. PubMed ID: 18534612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Northward expansion of the invasive Linepithema humile (Hymenoptera: Formicidae) in the eastern United States is constrained by winter soil temperatures.
    Brightwell RJ; Labadie PE; Silverman J
    Environ Entomol; 2010 Oct; 39(5):1659-65. PubMed ID: 22546465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is thermal limitation the primary driver of elevational distributions? Not for montane rainforest ants in the Australian Wet Tropics.
    Nowrouzi S; Andersen AN; Bishop TR; Robson SKA
    Oecologia; 2018 Oct; 188(2):333-342. PubMed ID: 29736865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus.
    Fangue NA; Hofmeister M; Schulte PM
    J Exp Biol; 2006 Aug; 209(Pt 15):2859-72. PubMed ID: 16857869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical thermal minima, their spatial and temporal variation and response to hardening in Myrmica ants.
    Maysov A; Kipyatkov VE
    Cryo Letters; 2009; 30(1):29-40. PubMed ID: 19274309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.