These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25660667)

  • 1. Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials.
    Ibbotson LA; Demetriadou A; Croxall S; Hess O; Baumberg JJ
    Sci Rep; 2015 Feb; 5():8313. PubMed ID: 25660667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabricating large-area metallic woodpile photonic crystals using stacking and rolling.
    Ibbotson LA; Baumberg JJ
    Nanotechnology; 2013 Aug; 24(30):305301. PubMed ID: 23807379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide.
    Marichy C; Muller N; Froufe-Pérez LS; Scheffold F
    Sci Rep; 2016 Feb; 6():21818. PubMed ID: 26911540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Titania woodpiles with complete three-dimensional photonic bandgaps in the visible.
    Frölich A; Fischer J; Zebrowski T; Busch K; Wegener M
    Adv Mater; 2013 Jul; 25(26):3588-92. PubMed ID: 23703892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures.
    Zhang X; Liu H; Feng S
    Nanotechnology; 2009 Oct; 20(42):425303. PubMed ID: 19779226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multicolor patterning using holographic woodpile photonic crystals at visible wavelengths.
    Park SG; Yang SM
    Nanoscale; 2013 May; 5(10):4110-3. PubMed ID: 23538506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cylinder gratings in conical incidence with applications to woodpile structures.
    Smith GH; Botten LC; McPhedran RC; Nicorovici NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056620. PubMed ID: 12786309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Femtosecond laser direct writing of large-area two-dimensional metallic photonic crystal structures on tungsten surfaces.
    Qiao H; Yang J; Wang F; Yang Y; Sun J
    Opt Express; 2015 Oct; 23(20):26617-27. PubMed ID: 26480174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-lithographically fabricated titanium dioxide based visible frequency three dimensional gap photonic crystal.
    Subramania G; Lee YJ; Brener I; Luk TS; Clem PG
    Opt Express; 2007 Oct; 15(20):13049-57. PubMed ID: 19550574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Imprinting of Large-Area Metallic Photonic Lattices for Infrared Polarization Filters with Broadband Tunability.
    Dou F; Peng C; Zou M; Zhang X
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Application Progress of Holographic Lithgraphy in Fabrication of Micro-Nano Photonic Structures].
    Wang X; Lü H; Zhao QL; Zhang SY; Tam WY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3461-9. PubMed ID: 30198243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photonic band-gap formation by optical-phase-mask lithography.
    Chan TY; Toader O; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046610. PubMed ID: 16711945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-area, near-infrared (IR) photonic crystals with colloidal gold nanoparticles embedding.
    Shukla S; Baev A; Jee H; Hu R; Burzynski R; Yoon YK; Prasad PN
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):1242-6. PubMed ID: 20423143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale patterning of plasmonic metamaterials.
    Henzie J; Lee MH; Odom TW
    Nat Nanotechnol; 2007 Sep; 2(9):549-54. PubMed ID: 18654366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications.
    Deubel M; von Freymann G; Wegener M; Pereira S; Busch K; Soukoulis CM
    Nat Mater; 2004 Jul; 3(7):444-7. PubMed ID: 15195083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-metallic three-dimensional photonic crystals with a large infrared bandgap.
    Fleming JG; Lin SY; El-Kady I; Biswas R; Ho KM
    Nature; 2002 May; 417(6884):52-5. PubMed ID: 11986662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-area magnetic metamaterials via compact interference lithography.
    Feth N; Enkrich C; Wegener M; Linden S
    Opt Express; 2007 Jan; 15(2):501-7. PubMed ID: 19532268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable index metamaterials made by bottom-up approaches.
    Gómez-Castaño M; Zheng H; García-Pomar JL; Vallée R; Mihi A; Ravaine S
    Nanoscale Adv; 2019 Mar; 1(3):1070-1076. PubMed ID: 31304458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformal CVD-Grown MoS
    Taverne MPC; Zheng X; Chen YJ; Morgan KA; Chen L; Palakkool NM; Rezaie D; Awachi H; Rarity JG; Hewak DW; Huang CC; Ho YD
    ACS Appl Opt Mater; 2023 May; 1(5):990-996. PubMed ID: 37255502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic metamaterials by direct laser writing and silver chemical vapour deposition.
    Rill MS; Plet C; Thiel M; Staude I; von Freymann G; Linden S; Wegener M
    Nat Mater; 2008 Jul; 7(7):543-6. PubMed ID: 18469820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.