These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 25660993)

  • 1. Methods for determining the efficacy of radical-trapping antioxidants.
    Li B; Pratt DA
    Free Radic Biol Med; 2015 May; 82():187-202. PubMed ID: 25660993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Insights on Hydrogen Atom Transfer in the Inhibition of Hydrocarbon Autoxidation.
    Poon JF; Pratt DA
    Acc Chem Res; 2018 Sep; 51(9):1996-2005. PubMed ID: 30035527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free radical oxidation of polyunsaturated lipids: New mechanistic insights and the development of peroxyl radical clocks.
    Pratt DA; Tallman KA; Porter NA
    Acc Chem Res; 2011 Jun; 44(6):458-67. PubMed ID: 21486044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advantages and limitations of common testing methods for antioxidants.
    Amorati R; Valgimigli L
    Free Radic Res; 2015 May; 49(5):633-49. PubMed ID: 25511471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast and simple method for the simultaneous evaluation of the capacity and efficiency of food antioxidants in trapping peroxyl radicals in an intestinal model system.
    Rossetto M; Vanzani P; De Marco V; Zennaro L; Scarpa M; Rigo A
    J Agric Food Chem; 2008 May; 56(10):3486-92. PubMed ID: 18454542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method to evaluate capacity and efficiency of water soluble antioxidants as peroxyl radical scavengers.
    Zennaro L; Rossetto M; Vanzani P; De Marco V; Scarpa M; Battistin L; Rigo A
    Arch Biochem Biophys; 2007 Jun; 462(1):38-46. PubMed ID: 17466929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peroxyl radical scavenging activities of hamamelitannin in chemical and biological systems.
    Masaki H; Atsumi T; Sakurai H
    Free Radic Res; 1995 May; 22(5):419-30. PubMed ID: 7633570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of antioxidants: scope, limitations and relevance of assays.
    Pinchuk I; Shoval H; Dotan Y; Lichtenberg D
    Chem Phys Lipids; 2012 Sep; 165(6):638-47. PubMed ID: 22721987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The chemistry behind antioxidant capacity assays.
    Huang D; Ou B; Prior RL
    J Agric Food Chem; 2005 Mar; 53(6):1841-56. PubMed ID: 15769103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput quantitation of peroxyl radical scavenging capacity in bulk oils.
    Hay KX; Waisundara VY; Timmins M; Ou B; Pappalardo K; McHale N; Huang D
    J Agric Food Chem; 2006 Jul; 54(15):5299-305. PubMed ID: 16848509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How lipid unsaturation, peroxyl radical partitioning, and chromanol lipophilic tail affect the antioxidant activity of α-tocopherol: direct visualization via high-throughput fluorescence studies conducted with fluorogenic α-tocopherol analogues.
    Krumova K; Friedland S; Cosa G
    J Am Chem Soc; 2012 Jun; 134(24):10102-13. PubMed ID: 22568598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Phenolic chain-breaking antioxidants--their activity and mechanisms of action].
    Kowalewska E; Litwinienko G
    Postepy Biochem; 2010; 56(3):274-83. PubMed ID: 21117315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Addition products of alpha-tocopherol with lipid-derived free radicals.
    Yamauchi R
    Vitam Horm; 2007; 76():309-27. PubMed ID: 17628179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capacity of fucoxanthin for scavenging peroxyl radicals and inhibition of lipid peroxidation in model systems.
    Takashima M; Shichiri M; Hagihara Y; Yoshida Y; Niki E
    Free Radic Res; 2012 Nov; 46(11):1406-12. PubMed ID: 22900899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-hemolytic and peroxyl radical scavenging activity of organoselenium compounds: an in vitro study.
    Kumar BS; Kunwar A; Singh BG; Ahmad A; Priyadarsini KI
    Biol Trace Elem Res; 2011 May; 140(2):127-38. PubMed ID: 20424929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidant mechanism studies on ferulic acid: identification of oxidative coupling products from methyl ferulate and linoleate.
    Masuda T; Yamada K; Maekawa T; Takeda Y; Yamaguchi H
    J Agric Food Chem; 2006 Aug; 54(16):6069-74. PubMed ID: 16881718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2,3-Dihydro-5-hydroxy-2,2-dipentyl-4,6-di-tert-butylbenzofuran: design and evaluation as a novel radical-scavenging antioxidant against lipid peroxidation.
    Noguchi N; Iwaki Y; Takahashi M; Komuro E; Kato Y; Tamura K; Cynshi O; Kodama T; Niki E
    Arch Biochem Biophys; 1997 Jun; 342(2):236-43. PubMed ID: 9186484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorogenic α-tocopherol analogue for monitoring the antioxidant status within the inner mitochondrial membrane of live cells.
    Krumova K; Greene LE; Cosa G
    J Am Chem Soc; 2013 Nov; 135(45):17135-43. PubMed ID: 24111857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential inhibition of superoxide, hydroxyl and peroxyl radicals by nimesulide and its main metabolite 4-hydroxynimesulide.
    Maffei Facino R; Carini M; Aldini G; Saibene L; Morelli R
    Arzneimittelforschung; 1995 Oct; 45(10):1102-9. PubMed ID: 8595069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximizing the reactivity of phenolic and aminic radical-trapping antioxidants: just add nitrogen!
    Valgimigli L; Pratt DA
    Acc Chem Res; 2015 Apr; 48(4):966-75. PubMed ID: 25839082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.