These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 25661046)

  • 1. pH and light-controlled self-assembly of bistable [c2] daisy chain rotaxanes.
    Wolf A; Moulin E; Cid JJ; Goujon A; Du G; Busseron E; Fuks G; Giuseppone N
    Chem Commun (Camb); 2015 Mar; 51(20):4212-5. PubMed ID: 25661046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable Aggregation-Induced Emission and Förster Resonance Energy Transfer Behaviors of Bistable [
    Trung NT; Nhien PQ; Kim Cuc TT; Wu CH; Buu Hue BT; Wu JI; Li YK; Lin HC
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15353-15366. PubMed ID: 36926804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Daisy Chain Dendrimers: Integrated Mechanically Interlocked Molecules with Stimuli-Induced Dimension Modulation Feature.
    Li WJ; Wang W; Wang XQ; Li M; Ke Y; Yao R; Wen J; Yin GQ; Jiang B; Li X; Yin P; Yang HB
    J Am Chem Soc; 2020 May; 142(18):8473-8482. PubMed ID: 32302108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Hydrogenation of an Insulated Diarylacetylene Dimer Incorporated as Axle Molecules in a Cyclodextrin-Based [c2]Daisy Chain Rotaxane.
    Tsuda S; Yano Y; Yamaguchi M; Fujiwara SI; Nishiyama Y
    Chemistry; 2024 Oct; ():e202403523. PubMed ID: 39429117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclodextrin-Based [c2]Daisy Chain Rotaxane Insulating Two Diarylacetylene Cores.
    Tsuda S; Komai Y; Fujiwara SI; Nishiyama Y
    Chemistry; 2021 Jan; 27(6):1966-1969. PubMed ID: 33089897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of a pH-Sensitive Hetero[4]Rotaxane Molecular Machine that Combines [c2]Daisy and [2]Rotaxane Arrangements.
    Waelès P; Riss-Yaw B; Coutrot F
    Chemistry; 2016 May; 22(20):6837-45. PubMed ID: 27062072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox switchable daisy chain rotaxanes driven by radical-radical interactions.
    Bruns CJ; Frasconi M; Iehl J; Hartlieb KJ; Schneebeli ST; Cheng C; Stupp SI; Stoddart JF
    J Am Chem Soc; 2014 Mar; 136(12):4714-23. PubMed ID: 24512623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled Sol-Gel Transitions by Actuating Molecular Machine Based Supramolecular Polymers.
    Goujon A; Mariani G; Lang T; Moulin E; Rawiso M; Buhler E; Giuseppone N
    J Am Chem Soc; 2017 Apr; 139(13):4923-4928. PubMed ID: 28286945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical Self-Assembly of Supramolecular Muscle-Like Fibers.
    Goujon A; Du G; Moulin E; Fuks G; Maaloum M; Buhler E; Giuseppone N
    Angew Chem Int Ed Engl; 2016 Jan; 55(2):703-7. PubMed ID: 26582752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An electrochemically and thermally switchable donor-acceptor [c2]daisy chain rotaxane.
    Bruns CJ; Li J; Frasconi M; Schneebeli ST; Iehl J; Jacquot de Rouville HP; Stupp SI; Voth GA; Stoddart JF
    Angew Chem Int Ed Engl; 2014 Feb; 53(7):1953-8. PubMed ID: 24505012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bistable [c2] Daisy Chain Rotaxanes as Reversible Muscle-like Actuators in Mechanically Active Gels.
    Goujon A; Lang T; Mariani G; Moulin E; Fuks G; Raya J; Buhler E; Giuseppone N
    J Am Chem Soc; 2017 Oct; 139(42):14825-14828. PubMed ID: 29022707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast response dry-type artificial molecular muscles with [c2]daisy chains.
    Iwaso K; Takashima Y; Harada A
    Nat Chem; 2016 Jun; 8(6):625-32. PubMed ID: 27219709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-pot synthesis of a [c2]daisy-chain-containing hetero[4]rotaxane
    Fu X; Zhang Q; Rao SJ; Qu DH; Tian H
    Chem Sci; 2016 Mar; 7(3):1696-1701. PubMed ID: 28808537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acid-base actuation of [c2]daisy chains.
    Fang L; Hmadeh M; Wu J; Olson MA; Spruell JM; Trabolsi A; Yang YW; Elhabiri M; Albrecht-Gary AM; Stoddart JF
    J Am Chem Soc; 2009 May; 131(20):7126-34. PubMed ID: 19419175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new pH-switchable dimannosyl[c2]daisy chain molecular machine.
    Coutrot F; Romuald C; Busseron E
    Org Lett; 2008 Sep; 10(17):3741-4. PubMed ID: 18666774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotaxane-based molecular muscles.
    Bruns CJ; Stoddart JF
    Acc Chem Res; 2014 Jul; 47(7):2186-99. PubMed ID: 24877992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and optimization of molecular nanovalves based on redox-switchable bistable rotaxanes.
    Nguyen TD; Liu Y; Saha S; Leung KC; Stoddart JF; Zink JI
    J Am Chem Soc; 2007 Jan; 129(3):626-34. PubMed ID: 17227026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of molecular machines into supramolecular materials: actuation between equilibrium polymers and crystal-like gels.
    Mariani G; Goujon A; Moulin E; Rawiso M; Giuseppone N; Buhler E
    Nanoscale; 2017 Nov; 9(46):18456-18466. PubMed ID: 29159360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multicomponent Pseudorotaxane Quadrilateral as Dual-Way Logic AND Gate with Two Catalytic Outputs.
    Kundu S; Ghosh A; Paul I; Schmittel M
    J Am Chem Soc; 2022 Jul; 144(29):13039-13043. PubMed ID: 35834720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A light-powered stretch-contraction supramolecular system based on cobalt coordinated [1]rotaxane.
    Gao C; Ma X; Zhang Q; Wang Q; Qu D; Tian H
    Org Biomol Chem; 2011 Feb; 9(4):1126-32. PubMed ID: 21183982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.