These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25661173)

  • 1. Novel silicone-based polymer containing active methylene designed for the removal of indoor formaldehyde.
    Niu S; Yan H
    J Hazard Mater; 2015 Apr; 287():259-67. PubMed ID: 25661173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hollow latex particles functionalized with chitosan for the removal of formaldehyde from indoor air.
    Nuasaen S; Opaprakasit P; Tangboriboonrat P
    Carbohydr Polym; 2014 Jan; 101():179-87. PubMed ID: 24299763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of formaldehyde oxidation over Co3O4-Ce2 and Au/Co3O4-CeO2 catalysts at room temperature: effective removal and determination of reaction mechanism.
    Ma C; Wang D; Xue W; Dou B; Wang H; Hao Z
    Environ Sci Technol; 2011 Apr; 45(8):3628-34. PubMed ID: 21375237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Removal of formaldehyde with novel packed air purifier and its computational simulation].
    Li YH; Wang K; Zhao QL; Zhang LW; Yuan CS
    Huan Jing Ke Xue; 2008 Sep; 29(9):2659-64. PubMed ID: 19068661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formaldehyde: catalytic oxidation as a promising soft way of elimination.
    Quiroz Torres J; Royer S; Bellat JP; Giraudon JM; Lamonier JF
    ChemSusChem; 2013 Apr; 6(4):578-92. PubMed ID: 23456881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel hyperbranched polysiloxanes containing acetoacetyl groups synthesized through transesterification reaction.
    Niu S; Yan H
    Macromol Rapid Commun; 2015 Apr; 36(8):739-43. PubMed ID: 25684373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indoor formaldehyde removal by thermal catalyst: kinetic characteristics, key parameters, and temperature influence.
    Xu Q; Zhang Y; Mo J; Li X
    Environ Sci Technol; 2011 Jul; 45(13):5754-60. PubMed ID: 21667968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design approaches for a cycling adsorbent/photocatalyst system for indoor air purification: formaldehyde example.
    Chin P; Ollis DF
    J Air Waste Manag Assoc; 2008 Apr; 58(4):494-501. PubMed ID: 18422036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NaOH-modified ceramic honeycomb with enhanced formaldehyde adsorption and removal performance.
    Yu J; Li X; Xu Z; Xiao W
    Environ Sci Technol; 2013 Sep; 47(17):9928-33. PubMed ID: 23895134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of indoor pollutants under UV irradiation by a composite TiO2-zeolite sheet prepared using a papermaking technique.
    Ichiura H; Kitaoka T; Tanaka H
    Chemosphere; 2003 Jan; 50(1):79-83. PubMed ID: 12656232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Development and performance evaluation for a solid phase adsorption gas sampler of formaldehyde in indoor air].
    Yao XY; Wang W; Chen YL; Wang Y; Qi Q
    Wei Sheng Yan Jiu; 2005 Jul; 34(4):410-2. PubMed ID: 16229260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of biofilters to improve indoor air quality: the removal of toluene, TCE, and formaldehyde.
    Darlington A; Dixon MA; Pilger C
    Life Support Biosph Sci; 1998; 5(1):63-9. PubMed ID: 11540466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passive Control of Indoor Formaldehyde by Mixed-Metal Oxide Latex Paints.
    Adebayo BO; Trautman J; Al-Naddaf Q; Rownaghi AA; Rezaei F
    Environ Sci Technol; 2021 Jul; 55(13):9255-9265. PubMed ID: 34101438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotechnology progress for removal of indoor gaseous formaldehyde.
    Shao Y; Wang Y; Zhao R; Chen J; Zhang F; Linhardt RJ; Zhong W
    Appl Microbiol Biotechnol; 2020 May; 104(9):3715-3727. PubMed ID: 32172323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous removal of formaldehyde and benzene in indoor air with a combination of sorption- and decomposition-type air filters.
    Sekine Y; Fukuda M; Takao Y; Ozano T; Sakuramoto H; Wang KW
    Environ Technol; 2011 Dec; 33(15-16):1983-9. PubMed ID: 22439587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-confined atomic silver centers catalyzing formaldehyde oxidation.
    Hu P; Amghouz Z; Huang Z; Xu F; Chen Y; Tang X
    Environ Sci Technol; 2015 Feb; 49(4):2384-90. PubMed ID: 25634796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous silica spheres as indoor air pollutant scavengers.
    Delaney P; Healy RM; Hanrahan JP; Gibson LT; Wenger JC; Morris MA; Holmes JD
    J Environ Monit; 2010 Dec; 12(12):2244-51. PubMed ID: 20941430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of α-Al2O3 addition on microstructure, mechanical and formaldehyde adsorption properties of fly ash-based geopolymer products.
    Huang Y; Han M
    J Hazard Mater; 2011 Oct; 193():90-4. PubMed ID: 21802843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formaldehyde as a basis for residential ventilation rates.
    Sherman MH; Hodgson AT
    Indoor Air; 2004 Feb; 14(1):2-8. PubMed ID: 14756840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicone foul release coatings: effect of the interaction of oil and coating functionalities on the magnitude of macrofouling attachment strengths.
    Stein J; Truby K; Wood CD; Stein J; Gardner M; Swain G; Kavanagh C; Kovach B; Schultz M; Wiebe D; Holm E; Montemarano J; Wendt D; Smith C; Meyer A
    Biofouling; 2003 Apr; 19 Suppl():71-82. PubMed ID: 14618707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.