BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25661177)

  • 1. New insight into atmospheric mercury emissions from zinc smelters using mass flow analysis.
    Wu Q; Wang S; Hui M; Wang F; Zhang L; Duan L; Luo Y
    Environ Sci Technol; 2015 Mar; 49(6):3532-9. PubMed ID: 25661177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow Analysis of the Mercury Associated with Nonferrous Ore Concentrates: Implications on Mercury Emissions and Recovery in China.
    Wu Q; Wang S; Zhang L; Hui M; Wang F; Hao J
    Environ Sci Technol; 2016 Feb; 50(4):1796-803. PubMed ID: 26776914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury flows in large-scale gold production and implications for Hg pollution control.
    Wu Q; Wang S; Yang M; Su H; Li G; Tang Y; Hao J
    J Environ Sci (China); 2018 Jun; 68():91-99. PubMed ID: 29908749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Were mercury emission factors for Chinese non-ferrous metal smelters overestimated? Evidence from onsite measurements in six smelters.
    Zhang L; Wang S; Wu Q; Meng Y; Yang H; Wang F; Hao J
    Environ Pollut; 2012 Dec; 171():109-17. PubMed ID: 22892573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Estimate the mercury emissions from non-coal sources in China].
    Wang SX; Liu M; Jiang JK; Hao JM; Wu Y; Streets DG
    Huan Jing Ke Xue; 2006 Dec; 27(12):2401-6. PubMed ID: 17304831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atmospheric mercury emissions and speciation at the sulphur bank mercury mine superfund site, Northern California.
    Nacht DM; Gustin MS; Engle MA; Zehner RE; Giglini AD
    Environ Sci Technol; 2004 Apr; 38(7):1977-83. PubMed ID: 15112796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercury emission to atmosphere from primary Zn production in China.
    Li G; Feng X; Li Z; Qiu G; Shang L; Liang P; Wang D; Yang Y
    Sci Total Environ; 2010 Sep; 408(20):4607-12. PubMed ID: 20655573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury mass flow in iron and steel production process and its implications for mercury emission control.
    Wang F; Wang S; Zhang L; Yang H; Gao W; Wu Q; Hao J
    J Environ Sci (China); 2016 May; 43():293-301. PubMed ID: 27155436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial distribution and accumulation of Hg in soil surrounding a Zn/Pb smelter.
    Wu Q; Wang S; Wang L; Liu F; Lin CJ; Zhang L; Wang F
    Sci Total Environ; 2014 Oct; 496():668-677. PubMed ID: 24612491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Airborne emissions of mercury from municipal solid waste. II: potential losses of airborne mercury before landfill.
    Southworth GR; Lindberg SE; Bogle MA; Zhang H; Kuiken T; Price J; Reinhart D; Sfeir H
    J Air Waste Manag Assoc; 2005 Jul; 55(7):870-7. PubMed ID: 16111126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global emission and production of mercury during the pyrometallurgical extraction of nonferrous sulfide ores.
    Hylander LD; Herbert RB
    Environ Sci Technol; 2008 Aug; 42(16):5971-7. PubMed ID: 18767653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China.
    Zhang L; Wang S; Wang L; Wu Y; Duan L; Wu Q; Wang F; Yang M; Yang H; Hao J; Liu X
    Environ Sci Technol; 2015 Mar; 49(5):3185-94. PubMed ID: 25655106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Pathways of mercury emissions to atmosphere from closed municipal landfills].
    Li ZG; Feng XB; Tang SL; Wang SF
    Huan Jing Ke Xue; 2006 Jan; 27(1):19-23. PubMed ID: 16599114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trends in anthropogenic mercury emissions in China from 1995 to 2003.
    Wu Y; Wang S; Streets DG; Hao J; Chan M; Jiang J
    Environ Sci Technol; 2006 Sep; 40(17):5312-8. PubMed ID: 16999104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating mercury emissions from a zinc smelter in relation to China's mercury control policies.
    Wang SX; Song JX; Li GH; Wu Y; Zhang L; Wan Q; Streets DG; Chin CK; Hao JM
    Environ Pollut; 2010 Oct; 158(10):3347-53. PubMed ID: 20716469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions.
    Zhang Y; Jacob DJ; Horowitz HM; Chen L; Amos HM; Krabbenhoft DP; Slemr F; St Louis VL; Sunderland EM
    Proc Natl Acad Sci U S A; 2016 Jan; 113(3):526-31. PubMed ID: 26729866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mercury speciation and emissions from coal combustion in Guiyang, Southwest China.
    Tang S; Feng X; Qiu J; Yin G; Yang Z
    Environ Res; 2007 Oct; 105(2):175-82. PubMed ID: 17517388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model.
    Wang L; Wang S; Zhang L; Wang Y; Zhang Y; Nielsen C; McElroy MB; Hao J
    Environ Pollut; 2014 Jul; 190():166-75. PubMed ID: 24768744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of mercury emissions inventories for the Great Lakes states.
    Murray M; Holmes SA
    Environ Res; 2004 Jul; 95(3):282-97. PubMed ID: 15220063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions.
    Muntean M; Janssens-Maenhout G; Song S; Selin NE; Olivier JG; Guizzardi D; Maas R; Dentener F
    Sci Total Environ; 2014 Oct; 494-495():337-50. PubMed ID: 25068706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.