BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 25662164)

  • 1. Asymmetric flexural behavior from bamboo's functionally graded hierarchical structure: underlying mechanisms.
    Habibi MK; Samaei AT; Gheshlaghi B; Lu J; Lu Y
    Acta Biomater; 2015 Apr; 16():178-86. PubMed ID: 25662164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical properties of functionally graded hierarchical bamboo structures.
    Tan T; Rahbar N; Allameh SM; Kwofie S; Dissmore D; Ghavami K; Soboyejo WO
    Acta Biomater; 2011 Oct; 7(10):3796-803. PubMed ID: 21704742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant material features responsible for bamboo's excellent mechanical performance: a comparison of tensile properties of bamboo and spruce at the tissue, fibre and cell wall levels.
    Wang X; Keplinger T; Gierlinger N; Burgert I
    Ann Bot; 2014 Dec; 114(8):1627-35. PubMed ID: 25180290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bending Flexibility of Moso Bamboo (
    Wei X; Zhou H; Chen F; Wang G
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31234566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crack propagation in bamboo's hierarchical cellular structure.
    Habibi MK; Lu Y
    Sci Rep; 2014 Jul; 4():5598. PubMed ID: 24998298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water effects on the deformation and fracture behaviors of the multi-scaled cellular fibrous bamboo.
    Chen G; Luo H; Yang H; Zhang T; Li S
    Acta Biomater; 2018 Jan; 65():203-215. PubMed ID: 28987785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure and mechanics of Moso bamboo material.
    Dixon PG; Gibson LJ
    J R Soc Interface; 2014 Oct; 11(99):. PubMed ID: 25056211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bambusa balcooa bamboo-reinforced concrete beams: experimental and FEM investigation for energy-efficient pavement construction.
    Sain A; Gaur A; Somani P; Balotiya G
    Environ Sci Pollut Res Int; 2024 May; ():. PubMed ID: 38795293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bamboo's tissue structure facilitates large bending deflections.
    Chen Q; Razi H; Schlepütz CM; Fang C; Ma X; Fei B; Burgert I
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34608869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale structural insights of load bearing bamboo: A computational modeling approach.
    Cui J; Qin Z; Masic A; Buehler MJ
    J Mech Behav Biomed Mater; 2020 Jul; 107():103743. PubMed ID: 32364947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unveiling the mechanisms of Moso bamboo's motor function and internal growth stress.
    Luan Y; Yang Y; Jiang M; Liu H; Ma X; Zhang X; Sun F; Fang C
    New Phytol; 2024 Jun; ():. PubMed ID: 38887135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainable high-strength and dimensionally stable composites through in situ regulation and reconstitution of bamboo-derived lignin and hemicellulose contents.
    Han S; Chen X; Chen F; Lou Z; Ren X; Ye H; Wang G
    Int J Biol Macromol; 2024 May; 267(Pt 2):131595. PubMed ID: 38621564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-inspired protective structures for marine applications.
    Palomba G; Hone T; Taylor D; Crupi V
    Bioinspir Biomim; 2020 Aug; 15(5):056016. PubMed ID: 32610305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical properties of an advanced new carbon/flax/epoxy composite material for bone plate applications.
    Bagheri ZS; El Sawi I; Schemitsch EH; Zdero R; Bougherara H
    J Mech Behav Biomed Mater; 2013 Apr; 20():398-406. PubMed ID: 23499250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the Effect of Inhomogeneous Material on the Fracture Mechanisms of Bamboo by Finite Element Method.
    Ramful R; Sakuma A
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33182322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printed structures for modeling the Young's modulus of bamboo parenchyma.
    Dixon PG; Muth JT; Xiao X; Skylar-Scott MA; Lewis JA; Gibson LJ
    Acta Biomater; 2018 Mar; 68():90-98. PubMed ID: 29294375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bamboo-inspired tubular scaffolds with functional gradients.
    Yin K; Mylo MD; Speck T; Wegst UGK
    J Mech Behav Biomed Mater; 2020 Oct; 110():103826. PubMed ID: 32957175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bamboo-inspired optimal design for functionally graded hollow cylinders.
    Sato M; Inoue A; Shima H
    PLoS One; 2017; 12(5):e0175029. PubMed ID: 28467441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of geometry on mechanical properties of bio-inspired silica-based hierarchical materials.
    Dimas LS; Buehler MJ
    Bioinspir Biomim; 2012 Sep; 7(3):036024. PubMed ID: 22740585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional gradients in the pericarp of the green coconut inspire asymmetric fibre-composites with improved impact strength, and preserved flexural and tensile properties.
    Graupner N; Labonte D; Humburg H; Buzkan T; Dörgens A; Kelterer W; Müssig J
    Bioinspir Biomim; 2017 Feb; 12(2):026009. PubMed ID: 28245197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.