These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 25662166)

  • 1. Structure and mechanical properties of naturally occurring lightweight foam-filled cylinder--the peacock's tail coverts shaft and its components.
    Liu ZQ; Jiao D; Meyers MA; Zhang ZF
    Acta Biomater; 2015 Apr; 17():137-51. PubMed ID: 25662166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seagull feather shaft: Correlation between structure and mechanical response.
    Wang B; Meyers MA
    Acta Biomater; 2017 Jan; 48():270-288. PubMed ID: 27818305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A lightweight, biological structure with tailored stiffness: The feather vane.
    Sullivan TN; Pissarenko A; Herrera SA; Kisailus D; Lubarda VA; Meyers MA
    Acta Biomater; 2016 Sep; 41():27-39. PubMed ID: 27184403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The peacock's train (Pavo cristatus and Pavo cristatus mut. alba) I. structure, mechanics, and chemistry of the tail feather coverts.
    Weiss IM; Kirchner HO
    J Exp Zool A Ecol Genet Physiol; 2010 Dec; 313(10):690-703. PubMed ID: 20853418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The peacock's train (Pavo cristatus and Pavo cristatus mut. alba) II. The molecular parameters of feather keratin plasticity.
    Weiss IM; Schmitt KP; Kirchner HO
    J Exp Zool A Ecol Genet Physiol; 2011 Jun; 315(5):266-73. PubMed ID: 21404446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanics of the Peacock's Display: How Feather Structure and Resonance Influence Multimodal Signaling.
    Dakin R; McCrossan O; Hare JF; Montgomerie R; Amador Kane S
    PLoS One; 2016; 11(4):e0152759. PubMed ID: 27119380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remarkable shape memory effect of a natural biopolymer in aqueous environment.
    Liu ZQ; Jiao D; Zhang ZF
    Biomaterials; 2015 Oct; 65():13-21. PubMed ID: 26134080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired avian feather designs.
    Sullivan TN; Hung TT; Velasco-Hogan A; Meyers MA
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110066. PubMed ID: 31546447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An engineering perspective on the microstructure and compression properties of the seagull Larus argentatus feather rachis.
    Zou M; Zhou J; Xu L; Song J; Liu S; Li X
    Micron; 2019 Nov; 126():102735. PubMed ID: 31450186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and mechanical behaviors of protective armored pangolin scales and effects of hydration and orientation.
    Liu ZQ; Jiao D; Weng ZY; Zhang ZF
    J Mech Behav Biomed Mater; 2016 Mar; 56():165-174. PubMed ID: 26703230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscopy imaging and modeling study on the mechanical properties of the primary flight feather shaft of the bean goose, Anser fabalis.
    Liu C; Xu L; Li X; Liu Y; Qi Y; Sun J; Zou M
    Microsc Res Tech; 2022 Jul; 85(7):2446-2454. PubMed ID: 35274785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic hierarchical structural imperfections in a natural ceramic of bivalve shell with distinctly graded properties.
    Jiao D; Liu Z; Zhang Z; Zhang Z
    Sci Rep; 2015 Jul; 5():12418. PubMed ID: 26198844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separating the influence of the cortex and foam on the mechanical properties of porcupine quills.
    Yang W; McKittrick J
    Acta Biomater; 2013 Nov; 9(11):9065-74. PubMed ID: 23872514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure and compression resistance of bean goose (Anser fabalis) feather shaft.
    Zou M; Xu L; Zhou J; Song J; Liu S; Li X
    Microsc Res Tech; 2020 Feb; 83(2):156-164. PubMed ID: 31659818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of terrestrial, aerial and aquatic keratins: the structure and mechanical properties of pangolin scales, feather shafts and baleen plates.
    Wang B; Sullivan TN
    J Mech Behav Biomed Mater; 2017 Dec; 76():4-20. PubMed ID: 28522235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired fabrication and characterization of a synthetic fish skin for the protection of soft materials.
    Funk N; Vera M; Szewciw LJ; Barthelat F; Stoykovich MP; Vernerey FJ
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5972-83. PubMed ID: 25723101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexural and compressive mechanical behaviors of the porous titanium materials with entangled wire structure at different sintering conditions for load-bearing biomedical applications.
    He G; Liu P; Tan Q; Jiang G
    J Mech Behav Biomed Mater; 2013 Dec; 28():309-19. PubMed ID: 24021173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water-assisted self-healing and property recovery in a natural dermal armor of pangolin scales.
    Liu ZQ; Jiao D; Weng ZY; Zhang ZF
    J Mech Behav Biomed Mater; 2016 Mar; 56():14-22. PubMed ID: 26651064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Failure of flight feathers under uniaxial compression.
    Schelestow K; Troncoso OP; Torres FG
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():923-931. PubMed ID: 28576068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopy on the wing: Investigating possible differences in protein secondary structures in feather shafts of birds using Raman spectroscopy.
    Laurent CM; Dyke JM; Cook RB; Dyke G; de Kat R
    J Struct Biol; 2020 Jul; 211(1):107529. PubMed ID: 32416130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.