These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25662228)

  • 1. Applicability and safety of dual-frequency ultrasonic treatment for the transdermal delivery of drugs.
    Schoellhammer CM; Srinivasan S; Barman R; Mo SH; Polat BE; Langer R; Blankschtein D
    J Control Release; 2015 Mar; 202():93-100. PubMed ID: 25662228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound-enhanced transdermal transport.
    Merino G; Kalia YN; Guy RH
    J Pharm Sci; 2003 Jun; 92(6):1125-37. PubMed ID: 12761802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of microjet vs shock wave formation in sonophoresis.
    Wolloch L; Kost J
    J Control Release; 2010 Dec; 148(2):204-11. PubMed ID: 20655341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of low-frequency ultrasound on the transdermal permeation of mannitol: comparative studies with in vivo and in vitro skin.
    Tang H; Blankschtein D; Langer R
    J Pharm Sci; 2002 Aug; 91(8):1776-94. PubMed ID: 12115805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport pathways and enhancement mechanisms within localized and non-localized transport regions in skin treated with low-frequency sonophoresis and sodium lauryl sulfate.
    Polat BE; Figueroa PL; Blankschtein D; Langer R
    J Pharm Sci; 2011 Feb; 100(2):512-29. PubMed ID: 20740667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent progress in transdermal sonophoresis.
    Ita K
    Pharm Dev Technol; 2017 Jun; 22(4):458-466. PubMed ID: 26608060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An explanation for the variation of the sonophoretic transdermal transport enhancement from drug to drug.
    Mitragotri S; Blankschtein D; Langer R
    J Pharm Sci; 1997 Oct; 86(10):1190-2. PubMed ID: 9344179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Description of transdermal transport of hydrophilic solutes during low-frequency sonophoresis based on a modified porous pathway model.
    Tezel A; Sens A; Mitragotri S
    J Pharm Sci; 2003 Feb; 92(2):381-93. PubMed ID: 12532387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transdermal drug delivery using low-frequency sonophoresis.
    Mitragotri S; Blankschtein D; Langer R
    Pharm Res; 1996 Mar; 13(3):411-20. PubMed ID: 8692734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transdermal drug delivery using ultrasound-theory, understanding and critical analysis.
    Sivakumar M; Tachibana K; Pandit AB; Yasui K; Tuziuti T; Towata A; Iida Y
    Cell Mol Biol (Noisy-le-grand); 2005 Sep; 51 Suppl():OL767-84. PubMed ID: 16171576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in ultrasound-based transdermal drug delivery.
    Seah BC; Teo BM
    Int J Nanomedicine; 2018; 13():7749-7763. PubMed ID: 30538456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permeability enhancement for transdermal delivery of large molecule using low-frequency sonophoresis combined with microneedles.
    Han T; Das DB
    J Pharm Sci; 2013 Oct; 102(10):3614-22. PubMed ID: 23873449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of hydrophilic permeant transport parameters in the localized and non-localized transport regions of skin treated simultaneously with low-frequency ultrasound and sodium lauryl sulfate.
    Kushner J; Blankschtein D; Langer R
    J Pharm Sci; 2008 Feb; 97(2):906-18. PubMed ID: 17887123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental demonstration of the existence of highly permeable localized transport regions in low-frequency sonophoresis.
    Kushner J; Blankschtein D; Langer R
    J Pharm Sci; 2004 Nov; 93(11):2733-45. PubMed ID: 15389675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theoretical analysis of low-frequency sonophoresis: dependence of transdermal transport pathways on frequency and energy density.
    Tezel A; Sens A; Mitragotri S
    Pharm Res; 2002 Dec; 19(12):1841-6. PubMed ID: 12523663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The progress of research on low-frequency sonophoresis and its applications].
    Tu X; Yin Q; Zhang W; Huang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Dec; 25(6):1474-8. PubMed ID: 19166235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sonophoresis with ultrasound-responsive liquid-core nuclei for transdermal drug delivery.
    Park D; Won J; Lee G; Lee Y; Kim CW; Seo J
    Skin Res Technol; 2022 Mar; 28(2):291-298. PubMed ID: 35034386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic effect of low-frequency ultrasound and sodium lauryl sulfate on transdermal transport.
    Mitragotri S; Ray D; Farrell J; Tang H; Yu B; Kost J; Blankschtein D; Langer R
    J Pharm Sci; 2000 Jul; 89(7):892-900. PubMed ID: 10861590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound mediated transdermal drug delivery.
    Azagury A; Khoury L; Enden G; Kost J
    Adv Drug Deliv Rev; 2014 Jun; 72():127-43. PubMed ID: 24463344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic cavitation as an enhancing mechanism of low-frequency sonophoresis for transdermal drug delivery.
    Ueda H; Mutoh M; Seki T; Kobayashi D; Morimoto Y
    Biol Pharm Bull; 2009 May; 32(5):916-20. PubMed ID: 19420764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.