These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25662238)

  • 1. Influence of zeta potential on the flocculation of cyanobacteria cells using chitosan modified soil.
    Li L; Zhang H; Pan G
    J Environ Sci (China); 2015 Feb; 28():47-53. PubMed ID: 25662238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical assessment of chitosan as coagulant to remove cyanobacteria.
    Lürling M; Noyma NP; de Magalhães L; Miranda M; Mucci M; van Oosterhout F; Huszar VLM; Marinho MM
    Harmful Algae; 2017 Jun; 66():1-12. PubMed ID: 28602248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison and optimization of different methods for Microcystis aeruginosa's harvesting and the role of zeta potential on its efficiency.
    Geada P; Oliveira F; Loureiro L; Esteves D; Teixeira JA; Vasconcelos V; Vicente AA; Fernandes BD
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16708-16715. PubMed ID: 30993559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of cyanobacterial blooms in Taihu Lake using local soils. II. Effective removal of Microcystis aeruginosa using local soils and sediments modified by chitosan.
    Zou H; Pan G; Chen H; Yuan X
    Environ Pollut; 2006 May; 141(2):201-5. PubMed ID: 16213637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of algal flocculation on dissolved organic matters using cationic starch modified soils.
    Shi W; Bi L; Pan G
    J Environ Sci (China); 2016 Jul; 45():177-84. PubMed ID: 27372131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amphoteric starch-based bicomponent modified soil for mitigation of harmful algal blooms (HABs) with broad salinity tolerance: Flocculation, algal regrowth, and ecological safety.
    Jin X; Bi L; Lyu T; Chen J; Zhang H; Pan G
    Water Res; 2019 Nov; 165():115005. PubMed ID: 31450218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing the recruitment of sedimented algae and nutrient release into the overlying water using modified soil/sand flocculation-capping in eutrophic lakes.
    Pan G; Dai L; Li L; He L; Li H; Bi L; Gulati RD
    Environ Sci Technol; 2012 May; 46(9):5077-84. PubMed ID: 22486655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstructing clear water state and submersed vegetation on behalf of repeated flocculation with modified soil in an in situ mesocosm experiment in Lake Taihu.
    Tang X; Zhang X; Cao T; Ni L; Xie P
    Sci Total Environ; 2018 Jun; 625():1433-1445. PubMed ID: 29996440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Algal-flocculation removal by modified sediment of Taihu Lake in wind action].
    Liu GF; Fan CX; Zhong JC; Bai XL; Yin HB
    Huan Jing Ke Xue; 2009 Jan; 30(1):52-7. PubMed ID: 19353856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of harmful cyanobacterial blooms in Taihu Lake using local soils. III. Factors affecting the removal efficiency and an in situ field experiment using chitosan-modified local soils.
    Pan G; Zou H; Chen H; Yuan X
    Environ Pollut; 2006 May; 141(2):206-12. PubMed ID: 16214277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Flocculation and removal of water bloom cells Microcystis aeruginosa by chitosan-modified clays].
    Zou H; Pan G; Chen H
    Huan Jing Ke Xue; 2004 Nov; 25(6):40-3. PubMed ID: 15759878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of Microcystis aeruginosa using cationic starch modified soils.
    Shi W; Tan W; Wang L; Pan G
    Water Res; 2016 Jun; 97():19-25. PubMed ID: 26143587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous removal of harmful algal blooms and microcystins using microorganism- and chitosan-modified local soil.
    Li H; Pan G
    Environ Sci Technol; 2015 May; 49(10):6249-56. PubMed ID: 25901393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A universal method for flocculating harmful algal blooms in marine and fresh waters using modified sand.
    Li L; Pan G
    Environ Sci Technol; 2013 May; 47(9):4555-62. PubMed ID: 23611410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flocculation of cyanobacterial cells using coal fly ash modified chitosan.
    Yuan Y; Zhang H; Pan G
    Water Res; 2016 Jun; 97():11-8. PubMed ID: 26723521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flocculating properties and potential of Halobacillus sp. strain H9 for the mitigation of Microcystis aeruginosa blooms.
    Zhang D; Ye Q; Zhang F; Shao X; Fan Y; Zhu X; Li Y; Yao L; Tian Y; Zheng T; Xu H
    Chemosphere; 2019 Mar; 218():138-146. PubMed ID: 30471494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals.
    Pan G; Zhang MM; Chen H; Zou H; Yan H
    Environ Pollut; 2006 May; 141(2):195-200. PubMed ID: 16236411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in Microcystis aeruginosa cell integrity and variation in microcystin-LR and proteins during Tanfloc flocculation and floc storage.
    Hou J; Yang Z; Wang P; Wang C; Yang Y; Wang X
    Sci Total Environ; 2018 Jun; 626():264-273. PubMed ID: 29353776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective flocculation of Microcystis aeruginosa with simultaneous nutrient precipitation from hydrolyzed human urine.
    Wang YS; Tong ZH; Wang LF; Sheng GP; Yu HQ
    Chemosphere; 2018 Feb; 193():472-478. PubMed ID: 29156332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen and phosphorus dynamics in freshwater sediment after the deposition of flocculated cyanobacteria and the role of tubificid worms.
    Zhang L; Liao Q; Gu X; He W; Zhang Z; Fan C
    J Hazard Mater; 2014 Feb; 266():1-9. PubMed ID: 24374559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.