BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25662295)

  • 1. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries.
    Sathiya M; Leriche JB; Salager E; Gourier D; Tarascon JM; Vezin H
    Nat Commun; 2015 Feb; 6():6276. PubMed ID: 25662295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring metallic sub-micrometric lithium structures in Li-ion batteries by in situ electron paramagnetic resonance correlated spectroscopy and imaging.
    Dutoit CE; Tang M; Gourier D; Tarascon JM; Vezin H; Salager E
    Nat Commun; 2021 Mar; 12(1):1410. PubMed ID: 33658494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 4d Lithium-Rich Cathode System Reinvestigated with Electron Paramagnetic Resonance: Correlation between Ionicity, Oxygen Dimers, and Molecular O
    Wu X; Liu H; Lou X; Geng F; Li J; Li C; Hu B
    J Phys Chem Lett; 2023 Aug; 14(34):7711-7717. PubMed ID: 37615378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Ti(4+) on the electrochemical performance of Li-rich layered oxides - high power and long cycle life of Li2Ru1-xTixO3 cathodes.
    Kalathil AK; Arunkumar P; Kim DH; Lee JW; Im WB
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7118-28. PubMed ID: 25762101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Operando EPR for Simultaneous Monitoring of Anionic and Cationic Redox Processes in Li-Rich Metal Oxide Cathodes.
    Tang M; Dalzini A; Li X; Feng X; Chien PH; Song L; Hu YY
    J Phys Chem Lett; 2017 Sep; 8(17):4009-4016. PubMed ID: 28796514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research.
    Liu D; Shadike Z; Lin R; Qian K; Li H; Li K; Wang S; Yu Q; Liu M; Ganapathy S; Qin X; Yang QH; Wagemaker M; Kang F; Yang XQ; Li B
    Adv Mater; 2019 Jul; 31(28):e1806620. PubMed ID: 31099081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Operando observation of the gold-electrolyte interface in Li-O2 batteries.
    Gittleson FS; Ryu WH; Taylor AD
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19017-25. PubMed ID: 25318060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium Electrodeposition Dynamics in Aprotic Electrolyte Observed in Situ via Transmission Electron Microscopy.
    Leenheer AJ; Jungjohann KL; Zavadil KR; Sullivan JP; Harris CT
    ACS Nano; 2015 Apr; 9(4):4379-89. PubMed ID: 25785517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst.
    Lim HD; Song H; Kim J; Gwon H; Bae Y; Park KY; Hong J; Kim H; Kim T; Kim YH; Lepró X; Ovalle-Robles R; Baughman RH; Kang K
    Angew Chem Int Ed Engl; 2014 Apr; 53(15):3926-31. PubMed ID: 24596170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoporous Ru as a carbon- and binder-free cathode for Li-O2 batteries.
    Liao K; Zhang T; Wang Y; Li F; Jian Z; Yu H; Zhou H
    ChemSusChem; 2015 Apr; 8(8):1429-34. PubMed ID: 25809196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Following lithiation fronts in paramagnetic electrodes with in situ magnetic resonance spectroscopic imaging.
    Tang M; Sarou-Kanian V; Melin P; Leriche JB; Ménétrier M; Tarascon JM; Deschamps M; Salager E
    Nat Commun; 2016 Nov; 7():13284. PubMed ID: 27808094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li
    Pearce PE; Perez AJ; Rousse G; Saubanère M; Batuk D; Foix D; McCalla E; Abakumov AM; Van Tendeloo G; Doublet ML; Tarascon JM
    Nat Mater; 2017 May; 16(5):580-586. PubMed ID: 28250444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Considering Critical Factors of Li-rich Cathode and Si Anode Materials for Practical Li-ion Cell Applications.
    Ko M; Oh P; Chae S; Cho W; Cho J
    Small; 2015 Sep; 11(33):4058-73. PubMed ID: 26108922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and Performance of High Energy Li-Ion Battery Based on the Spherical Li[Li(0.2)Ni(0.16)Co(0.1)Mn(0.54)]O2 Cathode and Si Anode.
    Ye J; Li YX; Zhang L; Zhang XP; Han M; He P; Zhou HS
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):208-14. PubMed ID: 26651500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of hierarchical porous δ-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries.
    Zhang J; Luan Y; Lyu Z; Wang L; Xu L; Yuan K; Pan F; Lai M; Liu Z; Chen W
    Nanoscale; 2015 Sep; 7(36):14881-8. PubMed ID: 26290962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Li-Metal-Free Prelithiation of Si-Based Negative Electrodes for Full Li-Ion Batteries.
    Zhou H; Wang X; Chen D
    ChemSusChem; 2015 Aug; 8(16):2737-44. PubMed ID: 26216592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple synthesis of highly catalytic carbon-free MnCo2O4@Ni as an oxygen electrode for rechargeable Li-O2 batteries with long-term stability.
    Kalubarme RS; Jadhav HS; Ngo DT; Park GE; Fisher JG; Choi YI; Ryu WH; Park CJ
    Sci Rep; 2015 Aug; 5():13266. PubMed ID: 26292965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.