BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 25662314)

  • 1. Retina derived relaxation is mediated by K(ir) channels and the inhibition of Ca(2+) sensitization in isolated bovine retinal arteries.
    Takır S; Uydeş-Doğan BS; Özdemir O
    Exp Eye Res; 2015 Mar; 132():240-8. PubMed ID: 25662314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retina evokes biphasic relaxations in retinal artery unrelated to endothelium, K(V), K(ATP), K(Ca) channels and methyl palmitate.
    Takir S; Uydeş-Doğan BS; Ozdemir O
    Microvasc Res; 2011 May; 81(3):295-302. PubMed ID: 21382382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NaHS induces relaxation response in prostaglandin F(2α) precontracted bovine retinal arteries partially via K(v) and K(ir) channels.
    Takır S; Ortaköylü GZ; Toprak A; Uydeş-Doğan BS
    Exp Eye Res; 2015 Mar; 132():190-7. PubMed ID: 25662313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The vasorelaxing effect of CGRP and natriuretic peptides in isolated bovine retinal arteries.
    Boussery K; Delaey C; Van de Voorde J
    Invest Ophthalmol Vis Sci; 2005 Apr; 46(4):1420-7. PubMed ID: 15790910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vasorelaxing Effect of Resveratrol on Bovine Retinal Arteries.
    Vanden Daele L; Boydens C; Pauwels B; Van de Voorde J
    Invest Ophthalmol Vis Sci; 2016 Apr; 57(4):1655-61. PubMed ID: 27054518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adenosine enhances the relaxing influence of retinal tissue.
    Maenhaut N; Boussery K; Delaey C; Van de Voorde J
    Exp Eye Res; 2009 Jan; 88(1):71-8. PubMed ID: 18992241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen sulfide dilates the isolated retinal artery mainly via the activation of myosin phosphatase.
    Semiz AT; Teker AB; Yapar K; Doğan BSU; Takır S
    Life Sci; 2020 Aug; 255():117834. PubMed ID: 32454158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery.
    Dong H; Waldron GJ; Cole WC; Triggle CR
    Br J Pharmacol; 1998 Mar; 123(5):821-32. PubMed ID: 9535009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A retinal-derived relaxing factor mediates the hypoxic vasodilation of retinal arteries.
    Delaey C; Boussery K; Van de Voorde J
    Invest Ophthalmol Vis Sci; 2000 Oct; 41(11):3555-60. PubMed ID: 11006252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rat retinal tissue releases a vasorelaxing factor.
    Boussery K; Delaey C; Van de Voorde J
    Invest Ophthalmol Vis Sci; 2002 Oct; 43(10):3279-86. PubMed ID: 12356835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The endothelium-derived hyperpolarising factor (EDHF) in isolated bovine choroidal arteries.
    Delaey C; Boussery K; Breyne J; Vanheel B; Van de Voorde J
    Exp Eye Res; 2007 Jun; 84(6):1067-73. PubMed ID: 17418119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the retina-induced relaxation in mice.
    Vanden Daele L; Boydens C; Van de Voorde J
    Graefes Arch Clin Exp Ophthalmol; 2018 Oct; 256(10):1905-1912. PubMed ID: 30105641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arachidonic acid relaxes human pulmonary arteries through K+ channels and nitric oxide pathways.
    Guerard P; Goirand F; Fichet N; Bernard A; Rochette L; Morcillo EJ; Dumas M; Bardou M
    Eur J Pharmacol; 2004 Oct; 501(1-3):127-35. PubMed ID: 15464071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal tissue modulates retinal arterial tone through the release of a potent vasodilating factor.
    Delaey C
    Verh K Acad Geneeskd Belg; 2001; 63(4):335-57. PubMed ID: 11603059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of ATP-sensitive K+ channels in relaxation of penile resistance arteries.
    Ruiz Rubio JL; Hernández M; Rivera de los Arcos L; Benedito S; Recio P; García P; García-Sacristán A; Prieto D
    Urology; 2004 Apr; 63(4):800-5. PubMed ID: 15072915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of nitric oxide and Ca++-dependent K+ channels in mediating heterogeneous microvascular responses to acetylcholine in different vascular beds.
    Clark SG; Fuchs LC
    J Pharmacol Exp Ther; 1997 Sep; 282(3):1473-9. PubMed ID: 9316861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D; Simonsen U; Hernández M; García-Sacristán A
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles.
    Dalsgaard T; Kroigaard C; Bek T; Simonsen U
    Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3819-25. PubMed ID: 19255162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal arterial tone is controlled by a retinal-derived relaxing factor.
    Delaey C; Van de Voorde J
    Circ Res; 1998 Oct; 83(7):714-20. PubMed ID: 9758641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rho-kinase inhibition and electromechanical coupling in rat and guinea-pig ureter smooth muscle: Ca2+-dependent and -independent mechanisms.
    Shabir S; Borisova L; Wray S; Burdyga T
    J Physiol; 2004 Nov; 560(Pt 3):839-55. PubMed ID: 15331677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.