These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. CIRCADA: Shiny Apps for Exploration of Experimental and Synthetic Circadian Time Series with an Educational Emphasis. Cenek L; Klindziuk L; Lopez C; McCartney E; Martin Burgos B; Tir S; Harrington ME; Leise TL J Biol Rhythms; 2020 Apr; 35(2):214-222. PubMed ID: 31986956 [TBL] [Abstract][Full Text] [Related]
7. Time-frequency techniques in biomedical signal analysis. a tutorial review of similarities and differences. Wacker M; Witte H Methods Inf Med; 2013; 52(4):279-96. PubMed ID: 23703538 [TBL] [Abstract][Full Text] [Related]
8. Using the discrete wavelet transform for time-frequency analysis of the surface EMG signal. Constable R; Thornhill RJ Biomed Sci Instrum; 1993; 29():121-7. PubMed ID: 8329582 [TBL] [Abstract][Full Text] [Related]
9. WAVOS: a MATLAB toolkit for wavelet analysis and visualization of oscillatory systems. Harang R; Bonnet G; Petzold LR BMC Res Notes; 2012 Mar; 5():163. PubMed ID: 22448897 [TBL] [Abstract][Full Text] [Related]
10. UV spectrophotometric simultaneous determination of cefoperazone and sulbactam in pharmaceutical formulations by derivative, Fourier and wavelet transforms. Hoang VD; Loan NT; Tho VT; Nguyen HM Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():704-14. PubMed ID: 24374557 [TBL] [Abstract][Full Text] [Related]
12. Application of the dual-tree complex wavelet transform in biomedical signal denoising. Wang F; Ji Z Biomed Mater Eng; 2014; 24(1):109-15. PubMed ID: 24211889 [TBL] [Abstract][Full Text] [Related]
13. Computational Approaches and Tools as Applied to the Study of Rhythms and Chaos in Biology. Flesia AG; Nieto PS; Aon MA; Kembro JM Methods Mol Biol; 2022; 2399():277-341. PubMed ID: 35604562 [TBL] [Abstract][Full Text] [Related]
14. Accuracy enhancement of 3D profilometric human face reconstruction using undecimated wavelet analysis. Mohammadi F; Madanipour K; Rezaie AH Appl Opt; 2012 Jun; 51(16):3120-31. PubMed ID: 22695542 [TBL] [Abstract][Full Text] [Related]
15. Steerable pyramids and tight wavelet frames in L2(R(d)). Unser M; Chenouard N; Van de Ville D IEEE Trans Image Process; 2011 Oct; 20(10):2705-21. PubMed ID: 21478076 [TBL] [Abstract][Full Text] [Related]
16. Wavelet transforms for electrocardiogram processing. May C; Hubing N; Hahn AW Biomed Sci Instrum; 1997; 33():1-6. PubMed ID: 9731326 [TBL] [Abstract][Full Text] [Related]
17. Analysis of photonic Doppler velocimetry data based on the continuous wavelet transform. Liu S; Wang D; Li T; Chen G; Li Z; Peng Q Rev Sci Instrum; 2011 Feb; 82(2):023103. PubMed ID: 21361569 [TBL] [Abstract][Full Text] [Related]
18. Novel generalized Fourier representations and phase transforms. Singh P Digit Signal Process; 2020 Nov; 106():102830. PubMed ID: 32834705 [TBL] [Abstract][Full Text] [Related]
19. Estimating Granger causality from fourier and wavelet transforms of time series data. Dhamala M; Rangarajan G; Ding M Phys Rev Lett; 2008 Jan; 100(1):018701. PubMed ID: 18232831 [TBL] [Abstract][Full Text] [Related]
20. Multiscale characterization of chronobiological signals based on the discrete wavelet transform. Chan FH; Wu BM; Lam FK; Poon PW; Poon AM IEEE Trans Biomed Eng; 2000 Jan; 47(1):88-95. PubMed ID: 10646283 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]