BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 25662497)

  • 1. Ligand engagement on material surfaces is discriminated by cell mechanosensoring.
    Battista E; Causa F; Lettera V; Panzetta V; Guarnieri D; Fusco S; Gentile F; Netti PA
    Biomaterials; 2015 Mar; 45():72-80. PubMed ID: 25662497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The molecular mechanism of mediation of adsorbed serum proteins to endothelial cells adhesion and growth on biomaterials.
    Yang D; Lü X; Hong Y; Xi T; Zhang D
    Biomaterials; 2013 Jul; 34(23):5747-58. PubMed ID: 23660250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of cell-binding peptides on poly-ε-caprolactone film surface to biomimic the peripheral nervous system.
    de Luca AC; Stevens JS; Schroeder SL; Guilbaud JB; Saiani A; Downes S; Terenghi G
    J Biomed Mater Res A; 2013 Feb; 101(2):491-501. PubMed ID: 22927333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of irradiation modification and RGD sequence adsorption on the response of human osteoblasts to polycaprolactone.
    Marletta G; Ciapetti G; Satriano C; Pagani S; Baldini N
    Biomaterials; 2005 Aug; 26(23):4793-804. PubMed ID: 15763259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the material-cytoskeleton crosstalk via nanoconfinement of focal adhesions.
    Natale CF; Ventre M; Netti PA
    Biomaterials; 2014 Mar; 35(9):2743-51. PubMed ID: 24388800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crosstalk between focal adhesions and material mechanical properties governs cell mechanics and functions.
    Fusco S; Panzetta V; Embrione V; Netti PA
    Acta Biomater; 2015 Sep; 23():63-71. PubMed ID: 26004223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling mammalian cell interactions on patterned polyelectrolyte multilayer surfaces.
    Berg MC; Yang SY; Hammond PT; Rubner MF
    Langmuir; 2004 Feb; 20(4):1362-8. PubMed ID: 15803720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of bioactive extruded PLA/HA composite films on focal adhesion formation of preosteoblastic cells.
    Persson M; Lorite GS; Kokkonen HE; Cho SW; Lehenkari PP; Skrifvars M; Tuukkanen J
    Colloids Surf B Biointerfaces; 2014 Sep; 121():409-16. PubMed ID: 24986753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced cell adhesion and mature intracellular structure promoted by squaramide-based RGD mimics on bioinert surfaces.
    Narasimhan SK; Sejwal P; Zhu S; Luk YY
    Bioorg Med Chem; 2013 Apr; 21(8):2210-2216. PubMed ID: 23490157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of cell adhesion receptors in human osteoblasts cultured on biofunctionalized poly-(epsilon-caprolactone) surfaces.
    Amato I; Ciapetti G; Pagani S; Marletta G; Satriano C; Baldini N; Granchi D
    Biomaterials; 2007 Sep; 28(25):3668-78. PubMed ID: 17524476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fusion of polymeric material-binding peptide to cell-adhesion artificial proteins enhances their biological function.
    Waku T; Imanishi Y; Yoshino Y; Kunugi S; Serizawa T; Tanaka N
    Biointerphases; 2017 Apr; 12(2):021002. PubMed ID: 28438025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The synergy peptide PHSRN and the adhesion peptide RGD mediate cell adhesion through a common mechanism.
    Feng Y; Mrksich M
    Biochemistry; 2004 Dec; 43(50):15811-21. PubMed ID: 15595836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale TiO2 layers on biomaterials surfaces.
    Miyauchi T; Yamada M; Yamamoto A; Iwasa F; Suzawa T; Kamijo R; Baba K; Ogawa T
    Biomaterials; 2010 May; 31(14):3827-39. PubMed ID: 20153521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell adhesion mechanisms on laterally mobile polymer films.
    Kourouklis AP; Lerum RV; Bermudez H
    Biomaterials; 2014 Jun; 35(17):4827-34. PubMed ID: 24651034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell mechanosensory recognizes ligand compliance at biomaterial interface.
    Cosenza C; Lettera V; Causa F; Scognamiglio PL; Battista E; Netti PA
    Biomaterials; 2016 Jan; 76():282-91. PubMed ID: 26559356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface investigation on biomimetic materials to control cell adhesion: the case of RGD conjugation on PCL.
    Causa F; Battista E; Della Moglie R; Guarnieri D; Iannone M; Netti PA
    Langmuir; 2010 Jun; 26(12):9875-84. PubMed ID: 20349926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The improvement of fibroblast growth on hydrophobic biopolyesters by coating with polyhydroxyalkanoate granule binding protein PhaP fused with cell adhesion motif RGD.
    Dong Y; Li P; Chen CB; Wang ZH; Ma P; Chen GQ
    Biomaterials; 2010 Dec; 31(34):8921-30. PubMed ID: 20728212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of integrin-binding peptide and growth factor promotes cell adhesion on electron-beam-fabricated patterns.
    Kolodziej CM; Kim SH; Broyer RM; Saxer SS; Decker CG; Maynard HD
    J Am Chem Soc; 2012 Jan; 134(1):247-55. PubMed ID: 22126191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using model substrates to study the dependence of focal adhesion formation on the affinity of integrin-ligand complexes.
    Kato M; Mrksich M
    Biochemistry; 2004 Mar; 43(10):2699-707. PubMed ID: 15005605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrin specificity and enhanced cellular activities associated with surfaces presenting a recombinant fibronectin fragment compared to RGD supports.
    Petrie TA; Capadona JR; Reyes CD; García AJ
    Biomaterials; 2006 Nov; 27(31):5459-70. PubMed ID: 16846640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.