These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 25662648)

  • 61. Communication: Tracing phase boundaries via molecular simulation: an alternative to the Gibbs-Duhem integration method.
    Orkoulas G
    J Chem Phys; 2010 Sep; 133(11):111104. PubMed ID: 20866119
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Molecular simulation of the phase behavior of fluids and fluid mixtures using the synthetic method.
    Sadus RJ
    J Chem Phys; 2012 Aug; 137(5):054507. PubMed ID: 22894364
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Molecular dynamics simulations of vapor/liquid coexistence using the nonpolarizable water models.
    Sakamaki R; Sum AK; Narumi T; Yasuoka K
    J Chem Phys; 2011 Mar; 134(12):124708. PubMed ID: 21456696
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Simulation of phase boundaries using constrained cell models.
    Nayhouse M; Heng VR; Amlani AM; Orkoulas G
    J Phys Condens Matter; 2012 Sep; 24(37):375105. PubMed ID: 22850590
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Square-well fluid modelling of protein liquid-vapor coexistence.
    Duda Y
    J Chem Phys; 2009 Mar; 130(11):116101. PubMed ID: 19317570
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Phase behavior of the modified-Yukawa fluid and its sticky limit.
    Schöll-Paschinger E; Valadez-Pérez NE; Benavides AL; Castañeda-Priego R
    J Chem Phys; 2013 Nov; 139(18):184902. PubMed ID: 24320299
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Phase separation in mixtures of Yukawa and charged Yukawa particles from Gibbs ensemble Monte Carlo simulations and the mean spherical approximation.
    Kristóf T; Boda D; Henderson D
    J Chem Phys; 2004 Feb; 120(6):2846-50. PubMed ID: 15268431
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The stability of a crystal with diamond structure for patchy particles with tetrahedral symmetry.
    Noya EG; Vega C; Doye JP; Louis AA
    J Chem Phys; 2010 Jun; 132(23):234511. PubMed ID: 20572725
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effect of confinement on the solid-liquid coexistence of Lennard-Jones fluid.
    Das CK; Singh JK
    J Chem Phys; 2013 Nov; 139(17):174706. PubMed ID: 24206321
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Vapor-liquid equilibrium and critical asymmetry of square well and short square well chain fluids.
    Li L; Sun F; Chen Z; Wang L; Cai J
    J Chem Phys; 2014 Aug; 141(5):054905. PubMed ID: 25106611
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Simulation of fluid-solid coexistence in finite volumes: a method to study the properties of wall-attached crystalline nuclei.
    Deb D; Winkler A; Virnau P; Binder K
    J Chem Phys; 2012 Apr; 136(13):134710. PubMed ID: 22482583
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Thermal response of a microgel system.
    Wu KL; Lai SK
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):290-5. PubMed ID: 17188468
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Freezing transition and correlated motion in a quasi-two-dimensional colloid suspension.
    Zangi R; Rice SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061508. PubMed ID: 14754213
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Toward a robust and general molecular simulation method for computing solid-liquid coexistence.
    Eike DM; Brennecke JF; Maginn EJ
    J Chem Phys; 2005 Jan; 122(1):14115. PubMed ID: 15638650
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Structure of inhomogeneous Lennard-Jones fluid near the critical region and close to the vapor-liquid coexistence curve: Monte Carlo and density-functional theory studies.
    Zhou S; Jamnik A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):011202. PubMed ID: 16486128
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics.
    Sigalotti LD; Troconis J; Sira E; Peña-Polo F; Klapp J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013021. PubMed ID: 25122383
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effect of quenched size polydispersity on the fluid-solid transition in charged colloidal suspensions.
    Colombo J; Dijkstra M
    J Chem Phys; 2011 Apr; 134(15):154504. PubMed ID: 21513392
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Gas-liquid coexistence for the boson square-well fluid and the (4)He binodal anomaly.
    Fantoni R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):020102. PubMed ID: 25215668
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A combined molecular dynamics and Monte Carlo study of the approach towards phase separation in colloid-polymer mixtures.
    Zausch J; Horbach J; Virnau P; Binder K
    J Phys Condens Matter; 2010 Mar; 22(10):104120. PubMed ID: 21389454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.