These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 25662658)

  • 1. Enhancing conductivity of metallic carbon nanotube networks by transition metal adsorption.
    Ketolainen T; Havu V; Puska MJ
    J Chem Phys; 2015 Feb; 142(5):054705. PubMed ID: 25662658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the electrical conductivity of carbon nanotube networks: a first-principles study.
    Li EY; Marzari N
    ACS Nano; 2011 Dec; 5(12):9726-36. PubMed ID: 22059779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-principles study of Ru atoms and clusters adsorbed outside and inside carbon nanotubes.
    Gao H; Zhao J
    J Chem Phys; 2010 Jun; 132(23):234704. PubMed ID: 20572731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of transition-metal atoms on boron nitride nanotube: a density-functional study.
    Wu X; Zeng XC
    J Chem Phys; 2006 Jul; 125(4):44711. PubMed ID: 16942178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-principles calculations of carbon nanotubes adsorbed on Si(001).
    Orellana W; Miwa RH; Fazzio A
    Phys Rev Lett; 2003 Oct; 91(16):166802. PubMed ID: 14611426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin transport properties of 3d transition metal(II) phthalocyanines in contact with single-walled carbon nanotube electrodes.
    Shen X; Sun L; Yi Z; Benassi E; Zhang R; Shen Z; Sanvito S; Hou S
    Phys Chem Chem Phys; 2010 Sep; 12(36):10805-11. PubMed ID: 20657905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-to-semiconductor transition in squashed armchair carbon nanotubes.
    Lu JQ; Wu J; Duan W; Liu F; Zhu BF; Gu BL
    Phys Rev Lett; 2003 Apr; 90(15):156601. PubMed ID: 12732059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density functional calculations of nickel, palladium and cadmium adsorption onto (10,0) single-walled carbon nanotube.
    Aghashiri A; Fotooh FK; Hashemian S
    J Mol Model; 2019 Jun; 25(7):185. PubMed ID: 31183580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transparent conductive single-walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes.
    Blackburn JL; Barnes TM; Beard MC; Kim YH; Tenent RC; McDonald TJ; To B; Coutts TJ; Heben MJ
    ACS Nano; 2008 Jun; 2(6):1266-74. PubMed ID: 19206344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boron nitride and carbon double-wall hetero-nanotubes: first-principles calculation of electronic properties.
    Pan H; Feng YP; Lin J
    Nanotechnology; 2008 Mar; 19(9):095707. PubMed ID: 21817689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of the electronic structure of semiconducting nanotubes resulting from different metal contacts.
    Tarakeshwar P; Kim DM
    J Phys Chem B; 2005 Apr; 109(16):7601-4. PubMed ID: 16851878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory.
    Kim WY; Kim KS
    J Comput Chem; 2008 May; 29(7):1073-83. PubMed ID: 18072178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical functionalization of carbon nanotubes by carboxyl groups on stone-wales defects: a density functional theory study.
    Wang C; Zhou G; Liu H; Wu J; Qiu Y; Gu BL; Duan W
    J Phys Chem B; 2006 Jun; 110(21):10266-71. PubMed ID: 16722728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin transport properties of single metallocene molecules attached to single-walled carbon nanotubes via nickel adatoms.
    Wei P; Sun L; Benassi E; Shen Z; Sanvito S; Hou S
    J Chem Phys; 2011 Jun; 134(24):244704. PubMed ID: 21721654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bias-dependent amino-acid-induced conductance changes in short semi-metallic carbon nanotubes.
    Abadir GB; Walus K; Pulfrey DL
    Nanotechnology; 2010 Jan; 21(1):015202. PubMed ID: 19946157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The computational design of junctions between carbon nanotubes and graphene nanoribbons.
    Li YF; Li BR; Zhang HL
    Nanotechnology; 2009 Jun; 20(22):225202. PubMed ID: 19433869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. When double-wall carbon nanotubes can become metallic or semiconducting.
    Moradian R; Azadi S; Refii-Tabar H
    J Phys Condens Matter; 2007 Apr; 19(17):176209. PubMed ID: 21690955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles calculation on the conductance of a single 1,4-diisocyanatobenzene molecule with single-walled carbon nanotubes as the electrodes.
    Qian Z; Hou S; Ning J; Li R; Shen Z; Zhao X; Xue Z
    J Chem Phys; 2007 Feb; 126(8):084705. PubMed ID: 17343467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contact transparency of nanotube-molecule-nanotube junctions.
    Ke SH; Baranger HU; Yang W
    Phys Rev Lett; 2007 Oct; 99(14):146802. PubMed ID: 17930697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metallic carbon nanotubes with metal contacts: electronic structure and transport.
    Zienert A; Schuster J; Gessner T
    Nanotechnology; 2014 Oct; 25(42):425203. PubMed ID: 25267082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.