These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25662669)

  • 1. Erratum: "Periodic boundary conditions for QM/MM calculations: Ewald summation for extended Gaussian basis sets" [J. Chem. Phys. 139, 244108 (2013)].
    Holden ZC; Richard RM; Herbert JM
    J Chem Phys; 2015 Feb; 142(5):059901. PubMed ID: 25662669
    [No Abstract]   [Full Text] [Related]  

  • 2. Periodic boundary conditions for QM/MM calculations: Ewald summation for extended Gaussian basis sets.
    Holden ZC; Richard RM; Herbert JM
    J Chem Phys; 2013 Dec; 139(24):244108. PubMed ID: 24387358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Notes on "Ewald summation of electrostatic multipole interactions up to quadrupolar level" [J. Chem. Phys. 119, 7471 (2003)].
    Laino T; Hutter J
    J Chem Phys; 2008 Aug; 129(7):074102. PubMed ID: 19044755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics.
    Fennell CJ; Gezelter JD
    J Chem Phys; 2006 Jun; 124(23):234104. PubMed ID: 16821904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rigorous Error Bounds for Ewald Summation of Electrostatics at Planar Interfaces.
    Pan C; Hu Z
    J Chem Theory Comput; 2014 Feb; 10(2):534-42. PubMed ID: 26580030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple and accurate scheme to compute electrostatic interaction: zero-dipole summation technique for molecular system and application to bulk water.
    Fukuda I; Kamiya N; Yonezawa Y; Nakamura H
    J Chem Phys; 2012 Aug; 137(5):054314. PubMed ID: 22894355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols.
    Riccardi D; Schaefer P; Cui Q
    J Phys Chem B; 2005 Sep; 109(37):17715-33. PubMed ID: 16853267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erratum: "Coupled-cluster based basis sets for valence correlation calculations" [J. Chem. Phys. 144, 104106 (2016)].
    Claudino D; Gargano R; Bartlett RJ
    J Chem Phys; 2016 Jul; 145(1):019901. PubMed ID: 27394127
    [No Abstract]   [Full Text] [Related]  

  • 9. Clusters of classical water models.
    Kiss PT; Baranyai A
    J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel algorithm for the computation of the Hartree-Fock exchange matrix: gas phase and periodic parallel ONX.
    Weber V; Challacombe M
    J Chem Phys; 2006 Sep; 125(10):104110. PubMed ID: 16999518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum and quasiclassical studies of the O(3P)+HCl-->OH+Cl(2P) reaction using benchmark potential surfaces.
    Xie T; Bowman J; Duff JW; Braunstein M; Ramachandran B
    J Chem Phys; 2005 Jan; 122(1):14301. PubMed ID: 15638653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient evaluation of short-range Hartree-Fock exchange in large molecules and periodic systems.
    Izmaylov AF; Scuseria GE; Frisch MJ
    J Chem Phys; 2006 Sep; 125(10):104103. PubMed ID: 16999511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lattice summations for spread out particles: applications to neutral and charged systems.
    Heyes DM; Brańka AC
    J Chem Phys; 2013 Jan; 138(3):034504. PubMed ID: 23343282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple "time step" Monte Carlo simulations: application to charged systems with Ewald summation.
    Bernacki K; Hetenyi B; Berne BJ
    J Chem Phys; 2004 Jul; 121(1):44-50. PubMed ID: 15260521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid-liquid transition in ST2 water.
    Liu Y; Palmer JC; Panagiotopoulos AZ; Debenedetti PG
    J Chem Phys; 2012 Dec; 137(21):214505. PubMed ID: 23231249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charging free energy calculations using the Generalized Solvent Boundary Potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and oxidation free energy in proteins.
    Lu X; Cui Q
    J Phys Chem B; 2013 Feb; 117(7):2005-18. PubMed ID: 23347181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Norm-conserving pseudopotentials with chemical accuracy compared to all-electron calculations.
    Willand A; Kvashnin YO; Genovese L; Vázquez-Mayagoitia Á; Deb AK; Sadeghi A; Deutsch T; Goedecker S
    J Chem Phys; 2013 Mar; 138(10):104109. PubMed ID: 23514467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contraction of completeness-optimized basis sets: application to ground-state electron momentum densities.
    Lehtola S; Manninen P; Hakala M; Hämäläinen K
    J Chem Phys; 2013 Jan; 138(4):044109. PubMed ID: 23387570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic charges derived from electrostatic potentials for molecular and periodic systems.
    Chen DL; Stern AC; Space B; Johnson JK
    J Phys Chem A; 2010 Sep; 114(37):10225-33. PubMed ID: 20795694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. II. Application of the local basis equation.
    Ferenczy GG
    J Comput Chem; 2013 Apr; 34(10):862-9. PubMed ID: 23288700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.