These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 25662969)
1. Cyanobacterial blue color formation during lysis under natural conditions. Arii S; Tsuji K; Tomita K; Hasegawa M; Bober B; Harada K Appl Environ Microbiol; 2015 Apr; 81(8):2667-75. PubMed ID: 25662969 [TBL] [Abstract][Full Text] [Related]
2. Blue color formation of cyanobacteria with beta-cyclocitral. Harada K; Ozaki K; Tsuzuki S; Kato H; Hasegawa M; Kuroda EK; Arii S; Tsuji K J Chem Ecol; 2009 Nov; 35(11):1295-301. PubMed ID: 19936836 [TBL] [Abstract][Full Text] [Related]
3. Differences in susceptibility of cyanobacteria species to lytic volatile organic compounds and influence on seasonal succession. Arii S; Yamashita R; Tsuji K; Tomita K; Hasegawa M; Bober B; Harada KI Chemosphere; 2021 Dec; 284():131378. PubMed ID: 34217930 [TBL] [Abstract][Full Text] [Related]
4. Lysis of cyanobacteria with volatile organic compounds. Ozaki K; Ohta A; Iwata C; Horikawa A; Tsuji K; Ito E; Ikai Y; Harada K Chemosphere; 2008 Apr; 71(8):1531-8. PubMed ID: 18179811 [TBL] [Abstract][Full Text] [Related]
5. Analytical aspects of cyanobacterial volatile organic compounds for investigation of their production behavior. Fujise D; Tsuji K; Fukushima N; Kawai K; Harada K J Chromatogr A; 2010 Sep; 1217(39):6122-5. PubMed ID: 20797719 [TBL] [Abstract][Full Text] [Related]
6. Characteristic oxidation behavior of β-cyclocitral from the cyanobacterium Microcystis. Tomita K; Hasegawa M; Arii S; Tsuji K; Bober B; Harada K Environ Sci Pollut Res Int; 2016 Jun; 23(12):11998-2006. PubMed ID: 26961531 [TBL] [Abstract][Full Text] [Related]
7. [Elucidation of Phenomena Involving Cyanobacteria in Freshwater Ecosystem by Chemically Ecological Approach]. Harada KI Yakugaku Zasshi; 2022; 142(1):39-64. PubMed ID: 34980750 [TBL] [Abstract][Full Text] [Related]
8. Effects of different cultivation conditions on the production of β-cyclocitral and β-ionone in Microcystis aeruginosa. Moretto JAS; de Freitas PNN; de Almeida ÉC; Altarugio LM; da Silva SV; de Fátima Fiore M; Pinto E BMC Microbiol; 2022 Mar; 22(1):78. PubMed ID: 35321650 [TBL] [Abstract][Full Text] [Related]
9. Analytical Technique Optimization on the Detection of β-cyclocitral in Yamashita R; Bober B; Kanei K; Arii S; Tsuji K; Harada KI Molecules; 2020 Feb; 25(4):. PubMed ID: 32075007 [TBL] [Abstract][Full Text] [Related]
10. Identification of geosmin and 2-methylisoborneol in cyanobacteria and molecular detection methods for the producers of these compounds. Suurnäkki S; Gomez-Saez GV; Rantala-Ylinen A; Jokela J; Fewer DP; Sivonen K Water Res; 2015 Jan; 68():56-66. PubMed ID: 25462716 [TBL] [Abstract][Full Text] [Related]
11. Spatial distributions of β-cyclocitral and β-ionone in the sediment and overlying water of the west shore of Taihu Lake. Liu X; Shi C; Xu X; Li X; Xu Y; Huang H; Zhao Y; Zhou Y; Shen H; Chen C; Wang G Sci Total Environ; 2017 Feb; 579():430-438. PubMed ID: 27890412 [TBL] [Abstract][Full Text] [Related]
12. Co-occurrence of multiple cyanotoxins and taste-and-odor compounds in the large eutrophic Lake Taihu, China: Dynamics, driving factors, and challenges for risk assessment. Li H; Gu X; Chen H; Mao Z; Shen R; Zeng Q; Ge Y Environ Pollut; 2022 Feb; 294():118594. PubMed ID: 34848287 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the Occurrence of Cyanotoxins in Lake Karaoun (Lebanon) by Mass Spectrometry, Bioassays and Molecular Methods. Hammoud NA; Zervou SK; Kaloudis T; Christophoridis C; Paraskevopoulou A; Triantis TM; Slim K; Szpunar J; Fadel A; Lobinski R; Hiskia A Toxins (Basel); 2021 Oct; 13(10):. PubMed ID: 34679009 [TBL] [Abstract][Full Text] [Related]
14. Toxic mechanism of two cyanobacterial volatiles β-cyclocitral and β-ionone on the photosynthesis in duckweed by altering gene expression. Du S; Xu H; Yang M; Pan N; Zheng T; Xu C; Li Y; Zuo Z Environ Pollut; 2022 Sep; 308():119711. PubMed ID: 35809713 [TBL] [Abstract][Full Text] [Related]
15. Volatile organic compounds derived from 2-keto-acid decarboxylase in Microcystis aeruginosa. Hasegawa M; Nishizawa A; Tsuji K; Kimura S; Harada K Microbes Environ; 2012; 27(4):525-8. PubMed ID: 23047148 [TBL] [Abstract][Full Text] [Related]
16. β-cyclocitral, a novel AChE inhibitor, contributes to the defense of Microcystis aeruginosa against Daphnia grazing. Chen W; Dou J; Xu X; Ma X; Chen J; Liu X J Hazard Mater; 2024 Mar; 465():133248. PubMed ID: 38147752 [TBL] [Abstract][Full Text] [Related]
17. Biochemistry and genetics of taste- and odor-producing cyanobacteria. Watson SB; Monis P; Baker P; Giglio S Harmful Algae; 2016 Apr; 54():112-127. PubMed ID: 28073471 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of the volatile organic substances associated with cyanobacteria and algae in a eutrophic shallow lake. Jüttner F Appl Environ Microbiol; 1984 Apr; 47(4):814-20. PubMed ID: 16346520 [TBL] [Abstract][Full Text] [Related]
19. Determination and occurrence of retinoids in a eutrophic lake (Taihu Lake, China): cyanobacteria blooms produce teratogenic retinal. Wu X; Jiang J; Hu J Environ Sci Technol; 2013 Jan; 47(2):807-14. PubMed ID: 23256639 [TBL] [Abstract][Full Text] [Related]
20. Dynamics and polyphasic characterization of odor-producing cyanobacterium Tychonema bourrellyi from Lake Erhai, China. Zhang H; Song G; Shao J; Xiang X; Li Q; Chen Y; Yang P; Yu G Environ Sci Pollut Res Int; 2016 Mar; 23(6):5420-30. PubMed ID: 26564199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]