These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 25663182)

  • 1. Imputation of systematically missing predictors in an individual participant data meta-analysis: a generalized approach using MICE.
    Jolani S; Debray TP; Koffijberg H; van Buuren S; Moons KG
    Stat Med; 2015 May; 34(11):1841-63. PubMed ID: 25663182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A framework for developing, implementing, and evaluating clinical prediction models in an individual participant data meta-analysis.
    Debray TP; Moons KG; Ahmed I; Koffijberg H; Riley RD
    Stat Med; 2013 Aug; 32(18):3158-80. PubMed ID: 23307585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data.
    Resche-Rigon M; White IR; Bartlett JW; Peters SA; Thompson SG;
    Stat Med; 2013 Dec; 32(28):4890-905. PubMed ID: 23857554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple imputation for IPD meta-analysis: allowing for heterogeneity and studies with missing covariates.
    Quartagno M; Carpenter JR
    Stat Med; 2016 Jul; 35(17):2938-54. PubMed ID: 26681666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing prediction models when there are systematically missing predictors in individual patient data meta-analysis.
    Seo M; Furukawa TA; Karyotaki E; Efthimiou O
    Res Synth Methods; 2023 May; 14(3):455-467. PubMed ID: 36755407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictors of clinical outcome in pediatric oligodendroglioma: meta-analysis of individual patient data and multiple imputation.
    Wang KY; Vankov ER; Lin DDM
    J Neurosurg Pediatr; 2018 Feb; 21(2):153-163. PubMed ID: 29192869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining multiple imputation and meta-analysis with individual participant data.
    Burgess S; White IR; Resche-Rigon M; Wood AM
    Stat Med; 2013 Nov; 32(26):4499-514. PubMed ID: 23703895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dealing with missing predictor values when applying clinical prediction models.
    Janssen KJ; Vergouwe Y; Donders AR; Harrell FE; Chen Q; Grobbee DE; Moons KG
    Clin Chem; 2009 May; 55(5):994-1001. PubMed ID: 19282357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing and validating risk prediction models in an individual participant data meta-analysis.
    Ahmed I; Debray TP; Moons KG; Riley RD
    BMC Med Res Methodol; 2014 Jan; 14():3. PubMed ID: 24397587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of a prediction model with missing predictor data: a practical approach.
    Vergouwe Y; Royston P; Moons KG; Altman DG
    J Clin Epidemiol; 2010 Feb; 63(2):205-14. PubMed ID: 19596181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The performance of prognostic models depended on the choice of missing value imputation algorithm: a simulation study.
    Deforth M; Heinze G; Held U
    J Clin Epidemiol; 2024 Dec; 176():111539. PubMed ID: 39326470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical approaches to identify subgroups in meta-analysis of individual participant data: a simulation study.
    Belias M; Rovers MM; Reitsma JB; Debray TPA; IntHout J
    BMC Med Res Methodol; 2019 Sep; 19(1):183. PubMed ID: 31477023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of existing methods for multiple imputation in individual participant data meta-analysis.
    Kunkel D; Kaizar EE
    Stat Med; 2017 Sep; 36(22):3507-3532. PubMed ID: 28695667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Missing data and imputation: a practical illustration in a prognostic study on low back pain.
    Vergouw D; Heymans MW; van der Windt DA; Foster NE; Dunn KM; van der Horst HE; de Vet HC
    J Manipulative Physiol Ther; 2012 Jul; 35(6):464-71. PubMed ID: 22964020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple imputation by chained equations for systematically and sporadically missing multilevel data.
    Resche-Rigon M; White IR
    Stat Methods Med Res; 2018 Jun; 27(6):1634-1649. PubMed ID: 27647809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meta-analysis and aggregation of multiple published prediction models.
    Debray TP; Koffijberg H; Nieboer D; Vergouwe Y; Steyerberg EW; Moons KG
    Stat Med; 2014 Jun; 33(14):2341-62. PubMed ID: 24752993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical imputation of systematically and sporadically missing data: An approximate Bayesian approach using chained equations.
    Jolani S
    Biom J; 2018 Mar; 60(2):333-351. PubMed ID: 28990686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imputation of missing values is superior to complete case analysis and the missing-indicator method in multivariable diagnostic research: a clinical example.
    van der Heijden GJ; Donders AR; Stijnen T; Moons KG
    J Clin Epidemiol; 2006 Oct; 59(10):1102-9. PubMed ID: 16980151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limitations in Using Multiple Imputation to Harmonize Individual Participant Data for Meta-Analysis.
    Siddique J; de Chavez PJ; Howe G; Cruden G; Brown CH
    Prev Sci; 2018 Feb; 19(Suppl 1):95-108. PubMed ID: 28243827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient two-step multivariate random effects meta-analysis of individual participant data for longitudinal clinical trials using mixed effects models.
    Noma H; Maruo K; Gosho M; Levine SZ; Goldberg Y; Leucht S; Furukawa TA
    BMC Med Res Methodol; 2019 Feb; 19(1):33. PubMed ID: 30764757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.