These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 25663262)
1. Highly efficient hydrogen storage system based on ammonium bicarbonate/formate redox equilibrium over palladium nanocatalysts. Su J; Yang L; Lu M; Lin H ChemSusChem; 2015 Mar; 8(5):813-6. PubMed ID: 25663262 [TBL] [Abstract][Full Text] [Related]
2. Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage. Wang F; Xu J; Shao X; Su X; Huang Y; Zhang T ChemSusChem; 2016 Feb; 9(3):246-51. PubMed ID: 26763714 [TBL] [Abstract][Full Text] [Related]
3. Amine-free reversible hydrogen storage in formate salts catalyzed by ruthenium pincer complex without pH control or solvent change. Kothandaraman J; Czaun M; Goeppert A; Haiges R; Jones JP; May RB; Prakash GK; Olah GA ChemSusChem; 2015 Apr; 8(8):1442-51. PubMed ID: 25824142 [TBL] [Abstract][Full Text] [Related]
4. Iron-catalyzed hydrogenation of bicarbonates and carbon dioxide to formates. Zhu F; Zhu-Ge L; Yang G; Zhou S ChemSusChem; 2015 Feb; 8(4):609-12. PubMed ID: 25603778 [TBL] [Abstract][Full Text] [Related]
5. Size-Dependent Activity of Palladium Nanoparticles: Efficient Conversion of CO Rahaman M; Dutta A; Broekmann P ChemSusChem; 2017 Apr; 10(8):1733-1741. PubMed ID: 28101986 [TBL] [Abstract][Full Text] [Related]
6. Formate-Bicarbonate Cycle as a Vehicle for Hydrogen and Energy Storage. Bahuguna A; Sasson Y ChemSusChem; 2021 Mar; 14(5):1258-1283. PubMed ID: 33231357 [TBL] [Abstract][Full Text] [Related]
7. Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions. Metin Ö; Sun X; Sun S Nanoscale; 2013 Feb; 5(3):910-2. PubMed ID: 23254519 [TBL] [Abstract][Full Text] [Related]
8. Hydrogen Production and Storage on a Formic Acid/Bicarbonate Platform using Water-Soluble N-Heterocyclic Carbene Complexes of Late Transition Metals. Jantke D; Pardatscher L; Drees M; Cokoja M; Herrmann WA; Kühn FE ChemSusChem; 2016 Oct; 9(19):2849-2854. PubMed ID: 27618800 [TBL] [Abstract][Full Text] [Related]
9. Hydrogenation of biofuels with formic acid over a palladium-based ternary catalyst with two types of active sites. Wang L; Zhang B; Meng X; Su DS; Xiao FS ChemSusChem; 2014 Jun; 7(6):1537-41. PubMed ID: 24861954 [TBL] [Abstract][Full Text] [Related]
10. Palladium Supported on Porous Chitosan-Graphene Oxide Aerogels as Highly Efficient Catalysts for Hydrogen Generation from Formate. Anouar A; Katir N; El Kadib A; Primo A; García H Molecules; 2019 Sep; 24(18):. PubMed ID: 31509955 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst. Tedsree K; Li T; Jones S; Chan CW; Yu KM; Bagot PA; Marquis EA; Smith GD; Tsang SC Nat Nanotechnol; 2011 May; 6(5):302-7. PubMed ID: 21478867 [TBL] [Abstract][Full Text] [Related]
12. Efficient PdNi and PdNi@Pd-catalyzed hydrogen generation via formic acid decomposition at room temperature. Qin YL; Wang J; Meng FZ; Wang LM; Zhang XB Chem Commun (Camb); 2013 Nov; 49(85):10028-30. PubMed ID: 24045900 [TBL] [Abstract][Full Text] [Related]
13. Improved hydrogen production from formic acid on a Pd/C catalyst doped by potassium. Bulushev DA; Jia L; Beloshapkin S; Ross JR Chem Commun (Camb); 2012 May; 48(35):4184-6. PubMed ID: 22447125 [TBL] [Abstract][Full Text] [Related]
14. DNA-directed growth of ultrafine CoAuPd nanoparticles on graphene as efficient catalysts for formic acid dehydrogenation. Wang ZL; Wang HL; Yan JM; Ping Y; O SI; Li SJ; Jiang Q Chem Commun (Camb); 2014 Mar; 50(21):2732-4. PubMed ID: 24473636 [TBL] [Abstract][Full Text] [Related]
15. Preparation of Pd-Co-based nanocatalysts and their superior applications in formic acid decomposition and methanol oxidation. Qin YL; Liu YC; Liang F; Wang LM ChemSusChem; 2015 Jan; 8(2):260-3. PubMed ID: 25504901 [TBL] [Abstract][Full Text] [Related]
16. Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Xi P; Chen F; Xie G; Ma C; Liu H; Shao C; Wang J; Xu Z; Xu X; Zeng Z Nanoscale; 2012 Sep; 4(18):5597-601. PubMed ID: 22732933 [TBL] [Abstract][Full Text] [Related]
17. DFT Study on the Mechanism of Hydrogen Storage Based on the Formate-Bicarbonate Equilibrium Catalyzed by an Ir-NHC Complex: An Elusive Intramolecular C-H Activation. Fehér PP; Horváth H; Joó F; Purgel M Inorg Chem; 2018 May; 57(10):5903-5914. PubMed ID: 29701960 [TBL] [Abstract][Full Text] [Related]
18. Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline-Based, Proton-Responsive Ligand. Wang L; Onishi N; Murata K; Hirose T; Muckerman JT; Fujita E; Himeda Y ChemSusChem; 2017 Mar; 10(6):1071-1075. PubMed ID: 27860395 [TBL] [Abstract][Full Text] [Related]
19. Interconversion between formic acid and H(2)/CO(2) using rhodium and ruthenium catalysts for CO(2) fixation and H(2) storage. Himeda Y; Miyazawa S; Hirose T ChemSusChem; 2011 Apr; 4(4):487-93. PubMed ID: 21271682 [TBL] [Abstract][Full Text] [Related]
20. Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Schuchmann K; Müller V Science; 2013 Dec; 342(6164):1382-5. PubMed ID: 24337298 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]