These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 25663339)
21. Environmental application of millimeter-scale sponge iron (s-Fe(0)) particles (II): the effect of surface copper. Ju Y; Liu X; Liu R; Li G; Wang X; Yang Y; Wei D; Fang J; Dionysiou DD J Hazard Mater; 2015 Apr; 287():325-34. PubMed ID: 25668301 [TBL] [Abstract][Full Text] [Related]
22. Nanoscale zero-valent iron (nZVI) for the treatment of concentrated Cu(II) wastewater: a field demonstration. Li S; Wang W; Yan W; Zhang WX Environ Sci Process Impacts; 2014 Mar; 16(3):524-33. PubMed ID: 24473735 [TBL] [Abstract][Full Text] [Related]
23. Removal of dinitrotoluenes from water via reduction with iron and peroxidase-catalyzed oxidative polymerization: a comparison between Arthromyces ramosus peroxidase and soybean peroxidase. Patapas J; Al-Ansari MM; Taylor KE; Bewtra JK; Biswas N Chemosphere; 2007 Apr; 67(8):1485-91. PubMed ID: 17267016 [TBL] [Abstract][Full Text] [Related]
24. Reduction of nitrobenzene by the catalyzed Fe/Cu process. Xu W; Li P; Fan J J Environ Sci (China); 2008; 20(8):915-21. PubMed ID: 18817068 [TBL] [Abstract][Full Text] [Related]
25. Electrochemical pilot scale study for reduction of 2,4-DNT. Doppalapudi R; Palaniswamy D; Sorial G; Maloney S Water Sci Technol; 2003; 47(9):173-8. PubMed ID: 12830957 [TBL] [Abstract][Full Text] [Related]
26. Reductive dechlorination of carbon tetrachloride in aqueous solutions containing ferrous and copper ions. Maithreepala RA; Doong RA Environ Sci Technol; 2004 Dec; 38(24):6676-84. PubMed ID: 15669327 [TBL] [Abstract][Full Text] [Related]
27. Kinetic Study of Nitrate Removal from Aqueous Solutions Using Copper-Coated Iron Nanoparticles. Vilardi G; Di Palma L Bull Environ Contam Toxicol; 2017 Mar; 98(3):359-365. PubMed ID: 27372457 [TBL] [Abstract][Full Text] [Related]
28. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH. Gheju M; Iovi A; Balcu I J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460 [TBL] [Abstract][Full Text] [Related]
29. Effects of different scrap iron as anode in Fe-C micro-electrolysis system for textile wastewater degradation. Sun Z; Xu Z; Zhou Y; Zhang D; Chen W Environ Sci Pollut Res Int; 2019 Sep; 26(26):26869-26882. PubMed ID: 31302892 [TBL] [Abstract][Full Text] [Related]
30. Degradation of thiocyanate by Fe/Cu/C microelectrolysis: Role of pre-magnetization and enhancement mechanism. Zhang M; Wang J; Zhan X; Xu W; He M; Ma D; Yue Z Environ Res; 2024 Jul; 252(Pt 2):118833. PubMed ID: 38599446 [TBL] [Abstract][Full Text] [Related]
31. Degradation of atrazine by catalytic ozonation in the presence of iron scraps: performance, transformation pathway, and acute toxicity. Li H; Zhou B J Environ Sci Health B; 2019; 54(5):432-440. PubMed ID: 30821587 [TBL] [Abstract][Full Text] [Related]
32. Towards understanding of heterogeneous Fenton reaction using carbon-Fe catalysts coupled to in-situ H Zárate-Guzmán AI; González-Gutiérrez LV; Godínez LA; Medel-Reyes A; Carrasco-Marín F; Romero-Cano LA Chemosphere; 2019 Jun; 224():698-706. PubMed ID: 30851521 [TBL] [Abstract][Full Text] [Related]
33. Dissolution and transport of 2,4-DNT and 2,6-DNT from M1 propellant in soil. Dontsova KM; Pennington JC; Hayes C; Simunek J; Williford CW Chemosphere; 2009 Oct; 77(4):597-603. PubMed ID: 19729186 [TBL] [Abstract][Full Text] [Related]
34. In vivo and in vitro metabolism of 2,4-dinitrotoluene in strain A mice. Schut HA; Dixit R; Loeb TR; Stoner GD Biochem Pharmacol; 1985 Apr; 34(7):969-76. PubMed ID: 3986000 [TBL] [Abstract][Full Text] [Related]
35. Degradation of the UV-filter benzophenone-3 in aqueous solution using persulfate activated by heat, metal ions and light. Pan X; Yan L; Qu R; Wang Z Chemosphere; 2018 Apr; 196():95-104. PubMed ID: 29291519 [TBL] [Abstract][Full Text] [Related]
36. Enhanced dechlorination of chlorinated methanes and ethenes by chloride green rust in the presence of copper(II). Maithreepala RA; Doong RA Environ Sci Technol; 2005 Jun; 39(11):4082-90. PubMed ID: 15984786 [TBL] [Abstract][Full Text] [Related]
37. Preparation and characterization of iron-copper binary oxide and its effective removal of antimony(III) from aqueous solution. Li Y; Geng B; Hu X; Ren B; Hursthouse AS Water Sci Technol; 2016; 74(2):393-401. PubMed ID: 27438244 [TBL] [Abstract][Full Text] [Related]
38. Remediation of dinitrotoluene contaminated soils from former ammunition plants: soil washing efficiency and effective process monitoring in bioslurry reactors. Zhang C; Daprato RC; Nishino SF; Spain JC; Hughes JB J Hazard Mater; 2001 Oct; 87(1-3):139-54. PubMed ID: 11566406 [TBL] [Abstract][Full Text] [Related]
39. A phenomenological reaction kinetic model for Cu removal from aqueous solutions by zero-valent iron (ZVI). Yoshino H; Kurosu S; Yamaguchi R; Kawase Y Chemosphere; 2018 Jun; 200():542-553. PubMed ID: 29501891 [TBL] [Abstract][Full Text] [Related]
40. Visible-light photo-Fenton oxidation of phenol with rGO-α-FeOOH supported on Al-doped mesoporous silica (MCM-41) at neutral pH: Performance and optimization of the catalyst. Wang Y; Liang M; Fang J; Fu J; Chen X Chemosphere; 2017 Sep; 182():468-476. PubMed ID: 28521161 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]