These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 25663403)

  • 1. Development of a screening tool to assess the temporal risk of pesticides leaching to groundwater using the source, target, vector approach. An Irish case study for shallow groundwater.
    Labite HE; Cummins E
    Environ Monit Assess; 2015 Mar; 187(3):91. PubMed ID: 25663403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A moni-modelling approach to manage groundwater risk to pesticide leaching at regional scale.
    Di Guardo A; Finizio A
    Sci Total Environ; 2016 Mar; 545-546():200-9. PubMed ID: 26747983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated approach for assessing influence of agricultural activities on pesticides in a shallow aquifer in south-eastern Norway.
    Kværner J; Eklo OM; Solbakken E; Solberg I; Sorknes S
    Sci Total Environ; 2014 Nov; 499():520-32. PubMed ID: 24996854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated management of pesticides in an intensive agricultural area: a case study in Altinova, Turkey.
    Muhammetoglu A; Keyikoglu R; Cil A; Muhammetoglu H
    Environ Monit Assess; 2019 Aug; 191(9):599. PubMed ID: 31463725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. When does the fluazifop-P-butyl degradate, TFMP, leach through an agricultural loamy soil to groundwater?
    Vendelboe AL; Norgaard T; Olsen P; de Jonge LW; Rosenbom AE
    Sci Total Environ; 2016 Aug; 562():1044-1053. PubMed ID: 27157530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of geographic information systems for assessing groundwater pollution potential by pesticides in Central Thailand.
    Thapinta A; Hudak PF
    Environ Int; 2003 Apr; 29(1):87-93. PubMed ID: 12605941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use pattern of pesticides and their predicted mobility into shallow groundwater and surface water bodies of paddy lands in Mahaweli river basin in Sri Lanka.
    Aravinna P; Priyantha N; Pitawala A; Yatigammana SK
    J Environ Sci Health B; 2017 Jan; 52(1):37-47. PubMed ID: 27754814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Levels and distributions of organochlorine pesticides in the soil-groundwater system of vegetable planting area in Tianjin City, Northern China.
    Pan HW; Lei HJ; He XS; Xi BD; Han YP; Xu QG
    Environ Geochem Health; 2017 Apr; 39(2):417-429. PubMed ID: 27975327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pesticide fate parameters and their uncertainty on the selection of 'worst-case' scenarios of pesticide leaching to groundwater.
    Vanderborght J; Tiktak A; Boesten JJ; Vereecken H
    Pest Manag Sci; 2011 Mar; 67(3):294-306. PubMed ID: 21308955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pesticide distribution in an agricultural environment in Argentina.
    Loewy RM; Monza LB; Kirs VE; Savini MC
    J Environ Sci Health B; 2011; 46(8):662-70. PubMed ID: 21806463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applying a statewide geospatial leaching tool for assessing soil vulnerability ratings for agrochemicals across the contiguous United States.
    Ki SJ; Ray C; Hantush MM
    Water Res; 2015 Jun; 77():107-118. PubMed ID: 25864002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of point-source pollutant loadings to soil and groundwater for 72 chemical substances.
    Yu S; Hwang SI; Yun ST; Chae G; Lee D; Kim KE
    Environ Sci Pollut Res Int; 2017 Nov; 24(32):24816-24843. PubMed ID: 28913678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meta-modeling of the pesticide fate model MACRO for groundwater exposure assessments using artificial neural networks.
    Stenemo F; Lindahl AM; Gärdenäs A; Jarvis N
    J Contam Hydrol; 2007 Aug; 93(1-4):270-83. PubMed ID: 17531347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring of Nitrate and Pesticide Pollution in Mnasra, Morocco Soil and Groundwater.
    Marouane B; Dahchour A; Dousset S; El Hajjaji S
    Water Environ Res; 2015 Jun; 87(6):567-75. PubMed ID: 26459825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific vulnerability assessment of nitrate in shallow groundwater with an improved DRSTIC-LE model.
    Liang J; Li Z; Yang Q; Lei X; Kang A; Li S
    Ecotoxicol Environ Saf; 2019 Jun; 174():649-657. PubMed ID: 30875558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Groundwater vulnerability assessment using DRASTIC and Pesticide DRASTIC models in intense agriculture area of the Gangetic plains, India.
    Saha D; Alam F
    Environ Monit Assess; 2014 Dec; 186(12):8741-63. PubMed ID: 25297711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial distributions and seasonal variations of organochlorine pesticides in water and soil samples in Bolu, Turkey.
    Karadeniz H; Yenisoy-Karakaş S
    Environ Monit Assess; 2015 Mar; 187(3):94. PubMed ID: 25663404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of artificial neural networks to assess pesticide contamination in shallow groundwater.
    Sahoo GB; Ray C; Mehnert E; Keefer DA
    Sci Total Environ; 2006 Aug; 367(1):234-51. PubMed ID: 16460784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concomitant determination of pesticides in soil and drainage water over a potato cropping season reveal dissipations largely in accordance with respective models.
    Mangold S; Hornák K; Bartolomé N; Hilber I; Bucheli TD
    Sci Total Environ; 2024 Oct; 945():173971. PubMed ID: 38876342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of pesticide leaching in a cracking clay soil with the PEARL model.
    Scorza Júnior RP; Boesten JJ
    Pest Manag Sci; 2005 May; 61(5):432-48. PubMed ID: 15643643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.