These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 25663444)

  • 1. In vivo imaging of microfluidic-produced microbubbles.
    Dhanaliwala AH; Dixon AJ; Lin D; Chen JL; Klibanov AL; Hossack JA
    Biomed Microdevices; 2015 Feb; 17(1):23. PubMed ID: 25663444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of transiently stable albumin-coated microbubbles via a flow-focusing microfluidic device.
    Chen JL; Dhanaliwala AH; Dixon AJ; Klibanov AL; Hossack JA
    Ultrasound Med Biol; 2014 Feb; 40(2):400-9. PubMed ID: 24342914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid Flooded Flow-Focusing Microfluidic Device for in situ Generation of Monodisperse Microbubbles.
    Dhanaliwala AH; Chen JL; Wang S; Hossack JA
    Microfluid Nanofluidics; 2013 Mar; 14(3-4):457-467. PubMed ID: 23439786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation.
    Lin H; Chen J; Chen C
    Med Biol Eng Comput; 2016 Sep; 54(9):1317-30. PubMed ID: 27016369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vitro Sonothrombolysis Enhancement by Transiently Stable Microbubbles Produced by a Flow-Focusing Microfluidic Device.
    Dixon AJ; Rickel JMR; Shin BD; Klibanov AL; Hossack JA
    Ann Biomed Eng; 2018 Feb; 46(2):222-232. PubMed ID: 29192346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Yielding Microbubble Production Method.
    Fiabane J; Prentice P; Pancholi K
    Biomed Res Int; 2016; 2016():3572827. PubMed ID: 27034935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing In Vitro Stability of Albumin Microbubbles Produced Using Microfluidic T-Junction Device.
    Khan AH; Surwase S; Jiang X; Edirisinghe M; Dalvi SV
    Langmuir; 2022 May; 38(17):5052-5062. PubMed ID: 34264681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Ultrasound and Capillary-Embedded T-Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation.
    Khan AH; Jiang X; Kaushik A; Nair HS; Edirisinghe M; Mercado-Shekhar KP; Shekhar H; Dalvi SV
    Langmuir; 2022 Aug; 38(33):10288-10304. PubMed ID: 35943351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted Ultrasound Contrast Imaging of Tumor Vasculature With Positively Charged Microbubbles.
    Diakova GB; Du Z; Klibanov AL
    Invest Radiol; 2020 Nov; 55(11):736-740. PubMed ID: 32569011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Theranostic Microbubbles Using Microfluidics for Ultrasound Imaging and Therapy: A Review.
    Pulsipher KW; Hammer DA; Lee D; Sehgal CM
    Ultrasound Med Biol; 2018 Dec; 44(12):2441-2460. PubMed ID: 30241729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaleable production of microbubbles using an ultrasound-modulated microfluidic device.
    Carugo D; Browning RJ; Iranmanesh I; Messaoudi W; Rademeyer P; Stride E
    J Acoust Soc Am; 2021 Aug; 150(2):1577. PubMed ID: 34470259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-intensity-curve Analysis and Tumor Extravasation of Nanobubble Ultrasound Contrast Agents.
    Wu H; Abenojar EC; Perera R; De Leon AC; An T; Exner AA
    Ultrasound Med Biol; 2019 Sep; 45(9):2502-2514. PubMed ID: 31248638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging.
    Hettiarachchi K; Talu E; Longo ML; Dayton PA; Lee AP
    Lab Chip; 2007 Apr; 7(4):463-8. PubMed ID: 17389962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Italian Society of Cardiovascular Echography (SIEC) Consensus Conference on the state of the art of contrast echocardiography.
    Ital Heart J; 2004 Apr; 5(4):309-34. PubMed ID: 15185894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals.
    Schutt EG; Klein DH; Mattrey RM; Riess JG
    Angew Chem Int Ed Engl; 2003 Jul; 42(28):3218-35. PubMed ID: 12876730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging.
    Yang F; Li Y; Chen Z; Zhang Y; Wu J; Gu N
    Biomaterials; 2009 Aug; 30(23-24):3882-90. PubMed ID: 19395082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced intracellular delivery of a model drug using microbubbles produced by a microfluidic device.
    Dixon AJ; Dhanaliwala AH; Chen JL; Hossack JA
    Ultrasound Med Biol; 2013 Jul; 39(7):1267-76. PubMed ID: 23643062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of PEGylation on performance of protein microbubbles and its comparison with lipid microbubbles.
    Upadhyay A; Dalvi SV; Gupta G; Khanna N
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():425-430. PubMed ID: 27987726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of albumin microbubble dissolution in aqueous media.
    Khan AH; Dalvi SV
    Soft Matter; 2020 Feb; 16(8):2149-2163. PubMed ID: 32016261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled Shrinkage of Microfluidically Generated Microbubbles by Tuning Lipid Concentration.
    Zalloum IO; Paknahad AA; Kolios MC; Karshafian R; Tsai SSH
    Langmuir; 2022 Nov; 38(43):13021-13029. PubMed ID: 36260341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.