These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 25664363)

  • 1. Trimethylamine (fishy odor) adsorption by biomaterials: effect of fatty acids, alkanes, and aromatic compounds in waxes.
    Boraphech P; Thiravetyan P
    J Hazard Mater; 2015 Mar; 284():269-77. PubMed ID: 25664363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cleanup of trimethylamine (fishy odor) from contaminated air by various species of Sansevieria spp. and their leaf materials.
    Boraphech P; Suksabye P; Kulinfra N; Kongsang W; Thiravetyan P
    Int J Phytoremediation; 2016 Oct; 18(10):1002-13. PubMed ID: 27294282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lignin and holocellulose from coir pith involved in trimethylamine (fishy odor) adsorption.
    Santawee N; Treesubsuntorn C; Thiravetyan P
    J Environ Sci (China); 2019 May; 79():43-53. PubMed ID: 30784463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of trimethylamine (fishy odor) by C₃ and CAM plants.
    Boraphech P; Thiravetyan P
    Environ Sci Pollut Res Int; 2015 Aug; 22(15):11543-57. PubMed ID: 25827651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake and degradation of trimethylamine by Euphorbia milii.
    Siswanto D; Chhon Y; Thiravetyan P
    Environ Sci Pollut Res Int; 2016 Sep; 23(17):17067-76. PubMed ID: 27209635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaf epicuticular wax chemicals of the Japanese knotweed Fallopia japonica as oviposition stimulants for Ostrinia latipennis.
    Li G; Ishikawa Y
    J Chem Ecol; 2006 Mar; 32(3):595-604. PubMed ID: 16586039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption Capacity and Desorption Efficiency of Activated Carbon for Odors from Medical Waste.
    Park JE; Jo ES; Lee GB; Lee SE; Hong BU
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-chain alkanes and fatty acids from Ludwigia octovalvis weed leaf surface waxes as short-range attractant and ovipositional stimulant to Altica cyanea (Weber) (Coleoptera: Chrysomelidae).
    Mitra S; Sarkar N; Barik A
    Bull Entomol Res; 2017 Jun; 107(3):391-400. PubMed ID: 28132659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trimethylamine removal by plant capsule of Sansevieria kirkii in combination with Bacillus cereus EN1.
    Treesubsuntorn C; Boraphech P; Thiravetyan P
    Environ Sci Pollut Res Int; 2017 Apr; 24(11):10139-10149. PubMed ID: 28258430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The determination of n-alkanes in the cuticular wax of leaves of Ludwigia adscendens L.
    Barik A; Bhattacharya B; Laskar S; Banerjee TC
    Phytochem Anal; 2004; 15(2):109-11. PubMed ID: 15116941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular lipids of Camelina sativa: characterization of chloroform-extractable waxes from aerial and subterranean surfaces.
    Razeq FM; Kosma DK; Rowland O; Molina I
    Phytochemistry; 2014 Oct; 106():188-196. PubMed ID: 25081105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaf Surface Wax Chemicals in Trichosanthes anguina (Cucurbitaceae) Cultivars Mediating Short-Range Attraction and Oviposition in Diaphania indica.
    Debnath R; Mitra P; Das S; Barik A
    J Chem Ecol; 2021 Jul; 47(7):664-679. PubMed ID: 34196857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low secondary leaf wax n-alkane synthesis on fully mature leaves of C3 grasses grown at controlled environmental conditions and variable humidity.
    Gamarra B; Kahmen A
    Rapid Commun Mass Spectrom; 2017 Jan; 31(2):218-226. PubMed ID: 27778411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cuticular waxes from potato (Solanum tuberosum) leaves.
    Szafranek BM; Synak EE
    Phytochemistry; 2006 Jan; 67(1):80-90. PubMed ID: 16310230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of In-Chain-Functionalized Compounds and Methyl-Branched Alkanes in Cuticular Waxes of Triticum aestivum cv. Bethlehem.
    Racovita RC; Jetter R
    PLoS One; 2016; 11(11):e0165827. PubMed ID: 27820857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of thirteen kinds of adsorbents for removal of hydrogen sulfide, methanethiol, methyl sulfide, trimethylamine, and ammonia.
    Miyoshi T; Tanada S; Boki K
    Sangyo Igaku; 1977 Jan; 19(1):2-7. PubMed ID: 199769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying instantaneous regeneration rates of plant leaf waxes using stable hydrogen isotope labeling.
    Gao L; Burnier A; Huang Y
    Rapid Commun Mass Spectrom; 2012 Jan; 26(2):115-22. PubMed ID: 22173799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abundance and distribution of plant derived leaf waxes (long chain n-alkanes & fatty acids) from lake surface sediments along the west coast of southern South America: Implications for environmental and climate reconstructions.
    Contreras S; Werne JP; Araneda A; Tejos E; Moscoso J
    Sci Total Environ; 2023 Oct; 895():165065. PubMed ID: 37355134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of ammonia and carbon dioxide on the sorption of a basic organic pollutant to a mineral surface.
    Ongwandee M; Bettinger SS; Morrison GC
    Indoor Air; 2005 Dec; 15(6):408-19. PubMed ID: 16268831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves.
    Beltrame KK; Cazetta AL; de Souza PSC; Spessato L; Silva TL; Almeida VC
    Ecotoxicol Environ Saf; 2018 Jan; 147():64-71. PubMed ID: 28837871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.