These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 25664734)
1. Ligand-bound structures of 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase from Moraxella catarrhalis reveal a water channel connecting to the active site for the second step of catalysis. Dhindwal S; Priyadarshini P; Patil DN; Tapas S; Kumar P; Tomar S; Kumar P Acta Crystallogr D Biol Crystallogr; 2015 Feb; 71(Pt 2):239-55. PubMed ID: 25664734 [TBL] [Abstract][Full Text] [Related]
2. The tail of KdsC: conformational changes control the activity of a haloacid dehalogenase superfamily phosphatase. Biswas T; Yi L; Aggarwal P; Wu J; Rubin JR; Stuckey JA; Woodard RW; Tsodikov OV J Biol Chem; 2009 Oct; 284(44):30594-603. PubMed ID: 19726684 [TBL] [Abstract][Full Text] [Related]
3. Conformational transition of Acinetobacter baumannii KdsC enzyme and the role of magnesium in binding: An insight from comparative molecular dynamics simulation and its implications in novel antibiotics design. Gulistan T; Ahmad S; Azam SS J Mol Graph Model; 2020 Sep; 99():107625. PubMed ID: 32417725 [TBL] [Abstract][Full Text] [Related]
4. Structural basis for the divergence of substrate specificity and biological function within HAD phosphatases in lipopolysaccharide and sialic acid biosynthesis. Daughtry KD; Huang H; Malashkevich V; Patskovsky Y; Liu W; Ramagopal U; Sauder JM; Burley SK; Almo SC; Dunaway-Mariano D; Allen KN Biochemistry; 2013 Aug; 52(32):5372-86. PubMed ID: 23848398 [TBL] [Abstract][Full Text] [Related]
5. Structure-function analysis of 2-keto-3-deoxy-D-glycero-D-galactonononate-9-phosphate phosphatase defines specificity elements in type C0 haloalkanoate dehalogenase family members. Lu Z; Wang L; Dunaway-Mariano D; Allen KN J Biol Chem; 2009 Jan; 284(2):1224-33. PubMed ID: 18986982 [TBL] [Abstract][Full Text] [Related]
7. Electronic structure of the metal center in the Cd(2+), Zn(2+), and Cu(2+) substituted forms of KDO8P synthase: implications for catalysis. Kona F; Tao P; Martin P; Xu X; Gatti DL Biochemistry; 2009 Apr; 48(16):3610-30. PubMed ID: 19228070 [TBL] [Abstract][Full Text] [Related]
8. Structure of 3-deoxy-manno-octulosonate cytidylyltransferase from Haemophilus influenzae complexed with the substrate 3-deoxy-manno-octulosonate in the beta-configuration. Yoon HJ; Ku MJ; Mikami B; Suh SW Acta Crystallogr D Biol Crystallogr; 2008 Dec; 64(Pt 12):1292-4. PubMed ID: 19018107 [TBL] [Abstract][Full Text] [Related]
9. Catalytic cycling in beta-phosphoglucomutase: a kinetic and structural analysis. Zhang G; Dai J; Wang L; Dunaway-Mariano D; Tremblay LW; Allen KN Biochemistry; 2005 Jul; 44(27):9404-16. PubMed ID: 15996095 [TBL] [Abstract][Full Text] [Related]
10. A preliminary X-ray study of 3-deoxy-D-manno-oct-2-ulosonic acid 8-phosphate phosphatase (YrbI) from Burkholderia pseudomallei. Park J; Lee D; Kim MS; Kim DY; Shin DH Acta Crystallogr F Struct Biol Commun; 2015 Jun; 71(Pt 6):790-3. PubMed ID: 26057814 [TBL] [Abstract][Full Text] [Related]
11. Targeting the role of a key conserved motif for substrate selection and catalysis by 3-deoxy-D-manno-octulosonate 8-phosphate synthase. Allison TM; Hutton RD; Cochrane FC; Yeoman JA; Jameson GB; Parker EJ Biochemistry; 2011 May; 50(18):3686-95. PubMed ID: 21438567 [TBL] [Abstract][Full Text] [Related]
12. Enzymatic synthesis of 3-deoxy-d-manno-octulosonic acid (KDO) and its application for LPS assembly. Wen L; Zheng Y; Li T; Wang PG Bioorg Med Chem Lett; 2016 Jun; 26(12):2825-2828. PubMed ID: 27173798 [TBL] [Abstract][Full Text] [Related]
13. Structural analysis of arabinose-5-phosphate isomerase from Bacteroides fragilis and functional implications. Chiu HJ; Grant JC; Farr CL; Jaroszewski L; Knuth MW; Miller MD; Elsliger MA; Deacon AM; Godzik A; Lesley SA; Wilson IA Acta Crystallogr D Biol Crystallogr; 2014 Oct; 70(Pt 10):2640-51. PubMed ID: 25286848 [TBL] [Abstract][Full Text] [Related]
14. An extended β7α7 substrate-binding loop is essential for efficient catalysis by 3-deoxy-D-manno-octulosonate 8-phosphate synthase. Allison TM; Hutton RD; Jiao W; Gloyne BJ; Nimmo EB; Jameson GB; Parker EJ Biochemistry; 2011 Nov; 50(43):9318-27. PubMed ID: 21942786 [TBL] [Abstract][Full Text] [Related]
15. Structural and mechanistic changes along an engineered path from metallo to nonmetallo 3-deoxy-D-manno-octulosonate 8-phosphate synthases. Kona F; Xu X; Martin P; Kuzmic P; Gatti DL Biochemistry; 2007 Apr; 46(15):4532-44. PubMed ID: 17381075 [TBL] [Abstract][Full Text] [Related]
16. Essential cysteines in 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase from Escherichia coli: analysis by chemical modification and site-directed mutagenesis. Salleh HM; Patel MA; Woodard RW Biochemistry; 1996 Jul; 35(27):8942-7. PubMed ID: 8688430 [TBL] [Abstract][Full Text] [Related]
17. Structural basis for substrate binding to human pyridoxal 5'-phosphate phosphatase/chronophin by a conformational change. Cho HJ; Lee HJ; Cho HY; Park JW; Lee DS; Lee HS; Kwon OS; Kang BS Int J Biol Macromol; 2019 Jun; 131():912-924. PubMed ID: 30914363 [TBL] [Abstract][Full Text] [Related]
18. 3-Deoxy-D-manno-octulosonate-8-phosphate (KDO-8-P) phosphatase. Ray PH; Benedict CD Methods Enzymol; 1982; 83():530-5. PubMed ID: 6285136 [No Abstract] [Full Text] [Related]
19. Purification and characterization of specific 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase from Escherichia coli B. Ray PH; Benedict CD J Bacteriol; 1980 Apr; 142(1):60-8. PubMed ID: 6246070 [TBL] [Abstract][Full Text] [Related]
20. Examining the role of intersubunit contacts in catalysis by 3-deoxy-d-manno-octulosonate 8-phosphate synthase. Allison TM; Cochrane FC; Jameson GB; Parker EJ Biochemistry; 2013 Jul; 52(27):4676-86. PubMed ID: 23746359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]