BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25664741)

  • 1. Structural insights into the efficient CO2-reducing activity of an NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA.
    Choe H; Ha JM; Joo JC; Kim H; Yoon HJ; Kim S; Son SH; Gengan RM; Jeon ST; Chang R; Jung KD; Kim YH; Lee HH
    Acta Crystallogr D Biol Crystallogr; 2015 Feb; 71(Pt 2):313-23. PubMed ID: 25664741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient CO2-reducing activity of NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA for formate production from CO2 gas.
    Choe H; Joo JC; Cho DH; Kim MH; Lee SH; Jung KD; Kim YH
    PLoS One; 2014; 9(7):e103111. PubMed ID: 25061666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How does methylviologen cation radical supply two electrons to the formate dehydrogenase in the catalytic reduction process of CO
    Miyaji A; Amao Y
    Phys Chem Chem Phys; 2020 Sep; 22(33):18595-18605. PubMed ID: 32785412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid molecular/enzymatic catalytic cascade for complete electro-oxidation of glycerol using a promiscuous NAD-dependent formate dehydrogenase from Candida boidinii.
    Abdellaoui S; Seow Chavez M; Matanovic I; Stephens AR; Atanassov P; Minteer SD
    Chem Commun (Camb); 2017 May; 53(39):5368-5371. PubMed ID: 28421214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific and sustainable bioelectro-reduction of carbon dioxide to formate on a novel enzymatic cathode.
    Zhang L; Liu J; Ong J; Li SF
    Chemosphere; 2016 Nov; 162():228-34. PubMed ID: 27501309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and Kinetic Studies of Formate Dehydrogenase from Candida boidinii.
    Guo Q; Gakhar L; Wickersham K; Francis K; Vardi-Kilshtain A; Major DT; Cheatum CM; Kohen A
    Biochemistry; 2016 May; 55(19):2760-71. PubMed ID: 27100912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability and reactivity of liposome-encapsulated formate dehydrogenase and cofactor system in carbon dioxide gas-liquid flow.
    Yoshimoto M; Yamashita T; Yamashiro T
    Biotechnol Prog; 2010; 26(4):1047-53. PubMed ID: 20730761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of an alpha-haloketone-resistant formate dehydrogenase from Thiobacillus sp. strain KNK65MA, and cloning of the gene.
    Nanba H; Takaoka Y; Hasegawa J
    Biosci Biotechnol Biochem; 2003 Oct; 67(10):2145-53. PubMed ID: 14586102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate.
    Hartmann T; Leimkühler S
    FEBS J; 2013 Dec; 280(23):6083-96. PubMed ID: 24034888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution structures of formate dehydrogenase from Candida boidinii.
    Schirwitz K; Schmidt A; Lamzin VS
    Protein Sci; 2007 Jun; 16(6):1146-56. PubMed ID: 17525463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study on CO
    Miyaji A; Amao Y
    Phys Chem Chem Phys; 2020 Dec; 22(46):26987-26994. PubMed ID: 33210103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural analysis of wild-type and Val120Thr mutant Candida boidinii formate dehydrogenase by X-ray crystallography.
    Gul M; Yuksel B; Bulut H; DeMirci H
    Acta Crystallogr D Struct Biol; 2023 Nov; 79(Pt 11):1010-1017. PubMed ID: 37860962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Metal Ions on the Activity of Ten NAD-Dependent Formate Dehydrogenases.
    Bulut H; Valjakka J; Yuksel B; Yilmazer B; Turunen O; Binay B
    Protein J; 2020 Oct; 39(5):519-530. PubMed ID: 33043425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of confinement of horse heart cytochrome c and formate dehydrogenase from Candida boidinii on mesoporous carbons on their catalytic activity.
    Hernández-Ibáñez N; Montiel V; Gomis-Berenguer A; Ania C; Iniesta J
    Bioprocess Biosyst Eng; 2021 Aug; 44(8):1699-1710. PubMed ID: 33813652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of liposome-coupled NADH and evaluation of its affinity toward formate dehydrogenase based on deactivation kinetics of the enzyme.
    Yoshimoto M; Kunihiro N; Tsubomura N; Nakayama M
    Colloids Surf B Biointerfaces; 2013 Sep; 109():40-4. PubMed ID: 23603041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of Formate from CO
    Yu X; Niks D; Ge X; Liu H; Hille R; Mulchandani A
    Biochemistry; 2019 Apr; 58(14):1861-1868. PubMed ID: 30839197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High resolution structures of holo and apo formate dehydrogenase.
    Lamzin VS; Dauter Z; Popov VO; Harutyunyan EH; Wilson KS
    J Mol Biol; 1994 Feb; 236(3):759-85. PubMed ID: 8114093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of a new metal and NAD
    Çakar MM; Mangas-Sanchez J; Birmingham WR; Turner NJ; Binay B
    Prep Biochem Biotechnol; 2018 Apr; 48(4):327-334. PubMed ID: 29504829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of formate dehydrogenase for improving conversion potential of carbon dioxide to formate.
    Shi HL; Yuan SW; Xi XQ; Xie YL; Yue C; Zhang YJ; Yao LG; Xue C; Tang CD
    World J Microbiol Biotechnol; 2023 Oct; 39(12):352. PubMed ID: 37864750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liposomes as chaperone mimics with controllable affinity toward heat-denatured formate dehydrogenase from Candida boidinii.
    Yoshimoto M; Kozono R; Tsubomura N
    Langmuir; 2015 Jan; 31(2):762-70. PubMed ID: 25513889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.