BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 25664857)

  • 21. Long-term haematopoietic reconstitution by Trp53-/-p16Ink4a-/-p19Arf-/- multipotent progenitors.
    Akala OO; Park IK; Qian D; Pihalja M; Becker MW; Clarke MF
    Nature; 2008 May; 453(7192):228-32. PubMed ID: 18418377
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Cephalic neural crests and disorders of craniofacial morphogenesis. Neurocristopathies (author's transl)].
    Couly G; Jacquier A; André JM; Schmitt J
    Rev Stomatol Chir Maxillofac; 1980; 81(6):332-48. PubMed ID: 6935729
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptional control in male germ cells: general factor TFIIA participates in CREM-dependent gene activation.
    De Cesare D; Fimia GM; Brancorsini S; Parvinen M; Sassone-Corsi P
    Mol Endocrinol; 2003 Dec; 17(12):2554-65. PubMed ID: 14512522
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The E2F-family proteins induce distinct cell cycle regulatory factors in p16-arrested, U343 astrocytoma cells.
    Dirks PB; Rutka JT; Hubbard SL; Mondal S; Hamel PA
    Oncogene; 1998 Aug; 17(7):867-76. PubMed ID: 9780003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. p16INK4a induces an age-dependent decline in islet regenerative potential.
    Krishnamurthy J; Ramsey MR; Ligon KL; Torrice C; Koh A; Bonner-Weir S; Sharpless NE
    Nature; 2006 Sep; 443(7110):453-7. PubMed ID: 16957737
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcription Factor IIA tau is associated with undifferentiated cells and its gene expression is repressed in primary neurons at the chromatin level in vivo.
    Howe ML; Mehmud ZF; Saha S; Buratovich M; Stutius EA; Schmidt HD; Lenon AL; Reddicks C; Ivanov GS; Przyborski SA; Ozer JS
    Stem Cells Dev; 2006 Apr; 15(2):175-90. PubMed ID: 16646664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice.
    Krimpenfort P; Quon KC; Mooi WJ; Loonstra A; Berns A
    Nature; 2001 Sep; 413(6851):83-6. PubMed ID: 11544530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic dissection of Pitx2 in craniofacial development uncovers new functions in branchial arch morphogenesis, late aspects of tooth morphogenesis and cell migration.
    Liu W; Selever J; Lu MF; Martin JF
    Development; 2003 Dec; 130(25):6375-85. PubMed ID: 14623826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development.
    Satokata I; Maas R
    Nat Genet; 1994 Apr; 6(4):348-56. PubMed ID: 7914451
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rieger syndrome revisited: experimental approaches using pharmacologic and antisense strategies to abrogate EGF and TGF-alpha functions resulting in dysmorphogenesis during embryonic mouse craniofacial morphogenesis.
    Slavkin HC
    Am J Med Genet; 1993 Oct; 47(5):689-97; discussion 687-8. PubMed ID: 8266997
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation.
    Dobreva G; Chahrour M; Dautzenberg M; Chirivella L; Kanzler B; Fariñas I; Karsenty G; Grosschedl R
    Cell; 2006 Jun; 125(5):971-86. PubMed ID: 16751105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The yeast FACT complex has a role in transcriptional initiation.
    Biswas D; Yu Y; Prall M; Formosa T; Stillman DJ
    Mol Cell Biol; 2005 Jul; 25(14):5812-22. PubMed ID: 15987999
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs?
    Hannou SA; Wouters K; Paumelle R; Staels B
    Trends Endocrinol Metab; 2015 Apr; 26(4):176-84. PubMed ID: 25744911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulating Craniofacial Development at the 3' End: MicroRNAs and Their Function in Facial Morphogenesis.
    Tavares AL; Artinger KB; Clouthier DE
    Curr Top Dev Biol; 2015; 115():335-75. PubMed ID: 26589932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromosomal position, structure, expression, and requirement of genes for chicken transcription factor IIA.
    Mabuchi T; Wakamatsu T; Nakadai T; Shimada M; Yamada K; Matsuda Y; Tamura TA
    Gene; 2007 Aug; 397(1-2):94-100. PubMed ID: 17544229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impaired processing of DNA photoproducts and ultraviolet hypermutability with loss of p16INK4a or p19ARF.
    Sarkar-Agrawal P; Vergilis I; Sharpless NE; DePinho RA; Rünger TM
    J Natl Cancer Inst; 2004 Dec; 96(23):1790-3. PubMed ID: 15572761
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Smad2 role in mesoderm formation, left-right patterning and craniofacial development.
    Nomura M; Li E
    Nature; 1998 Jun; 393(6687):786-90. PubMed ID: 9655392
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adenovirus-mediated overexpression of p15INK4B inhibits human glioma cell growth, induces replicative senescence, and inhibits telomerase activity similarly to p16INK4A.
    Fuxe J; Akusjärvi G; Goike HM; Roos G; Collins VP; Pettersson RF
    Cell Growth Differ; 2000 Jul; 11(7):373-84. PubMed ID: 10939591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New directions in craniofacial morphogenesis.
    Szabo-Rogers HL; Smithers LE; Yakob W; Liu KJ
    Dev Biol; 2010 May; 341(1):84-94. PubMed ID: 19941846
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antisense attenuation of Wnt-1 and Wnt-3a expression in whole embryo culture reveals roles for these genes in craniofacial, spinal cord, and cardiac morphogenesis.
    Augustine K; Liu ET; Sadler TW
    Dev Genet; 1993; 14(6):500-20. PubMed ID: 8111977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.