BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 25665073)

  • 1. Water-resistant, transparent hybrid nanopaper by physical cross-linking with chitosan.
    Toivonen MS; Kurki-Suonio S; Schacher FH; Hietala S; Rojas OJ; Ikkala O
    Biomacromolecules; 2015 Mar; 16(3):1062-71. PubMed ID: 25665073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical behavior of transparent nanofibrillar cellulose-chitosan nanocomposite films in dry and wet conditions.
    Wu T; Farnood R; O'Kelly K; Chen B
    J Mech Behav Biomed Mater; 2014 Apr; 32():279-286. PubMed ID: 24508714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content.
    Azeredo HM; Mattoso LH; Avena-Bustillos RJ; Filho GC; Munford ML; Wood D; McHugh TH
    J Food Sci; 2010; 75(1):N1-7. PubMed ID: 20492188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid films of chitosan, cellulose nanofibrils and boric acid: Flame retardancy, optical and thermo-mechanical properties.
    Uddin KMA; Ago M; Rojas OJ
    Carbohydr Polym; 2017 Dec; 177():13-21. PubMed ID: 28962751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Nontoxic Magnetic Cellulose Nanofibers on Chitosan Based Edible Nanocoating: A Candidate for Improved Mechanical, Thermal, Optical, and Texture Properties.
    Ghosh T; Teramoto Y; Katiyar V
    J Agric Food Chem; 2019 Apr; 67(15):4289-4299. PubMed ID: 30883112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong and tough cellulose nanopaper with high specific surface area and porosity.
    Sehaqui H; Zhou Q; Ikkala O; Berglund LA
    Biomacromolecules; 2011 Oct; 12(10):3638-44. PubMed ID: 21888417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of the wet properties of transparent chitosan-acetic-acid-salt films using microfibrillated cellulose.
    Nordqvist D; Idermark J; Hedenqvist MS; Gällstedt M; Ankerfors M; Lindström T
    Biomacromolecules; 2007 Aug; 8(8):2398-403. PubMed ID: 17645308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering cellulose nanopaper with water resistant, antibacterial, and improved barrier properties by impregnation of chitosan and the followed halogenation.
    Du H; Parit M; Liu K; Zhang M; Jiang Z; Huang TS; Zhang X; Si C
    Carbohydr Polym; 2021 Oct; 270():118372. PubMed ID: 34364616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets.
    Vallejos ME; Felissia FE; Area MC; Ehman NV; Tarrés Q; Mutjé P
    Carbohydr Polym; 2016 Mar; 139():99-105. PubMed ID: 26794952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic cross-linking of cellulose nanofibers: an approach to enhance mechanical stability for dynamic adsorption.
    Muqeet M; Qureshi UA; Mahar RB; Khatri Z; Ahmed F; Kim IS
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):28842-28851. PubMed ID: 31376130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile strategy for improvement properties of whey protein isolate/walnut oil bio-packaging films: Using modified cellulose nanofibers.
    Samadani F; Behzad T; Enayati MS
    Int J Biol Macromol; 2019 Oct; 139():858-866. PubMed ID: 31398405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-inspired multiproperty materials: strong, self-healing, and transparent artificial wood nanostructures.
    Merindol R; Diabang S; Felix O; Roland T; Gauthier C; Decher G
    ACS Nano; 2015 Feb; 9(2):1127-36. PubMed ID: 25590696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of interfibrillar PVA bridging on water stability and mechanical properties of TEMPO/NaClO2 oxidized cellulosic nanofibril films.
    Hakalahti M; Salminen A; Seppälä J; Tammelin T; Hänninen T
    Carbohydr Polym; 2015 Aug; 126():78-82. PubMed ID: 25933525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties.
    Peng XW; Ren JL; Zhong LX; Sun RC
    Biomacromolecules; 2011 Sep; 12(9):3321-9. PubMed ID: 21815695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of chitosan protonation degree in nanofibrillated cellulose/chitosan composite films and their morphological, mechanical, and surface properties.
    Torres C; Valerio O; Mendonça RT; Pereira M
    Int J Biol Macromol; 2024 May; 267(Pt 1):131587. PubMed ID: 38631587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macrofibers with High Mechanical Performance Based on Aligned Bacterial Cellulose Nanofibers.
    Yao J; Chen S; Chen Y; Wang B; Pei Q; Wang H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20330-20339. PubMed ID: 28045246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Holocellulose Nanofibers of High Molar Mass and Small Diameter for High-Strength Nanopaper.
    Galland S; Berthold F; Prakobna K; Berglund LA
    Biomacromolecules; 2015 Aug; 16(8):2427-35. PubMed ID: 26151837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole.
    Lay M; Méndez JA; Delgado-Aguilar M; Bun KN; Vilaseca F
    Carbohydr Polym; 2016 Nov; 152():361-369. PubMed ID: 27516283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophobization and smoothing of cellulose nanofibril films by cellulose ester coatings.
    Willberg-Keyriläinen P; Vartiainen J; Pelto J; Ropponen J
    Carbohydr Polym; 2017 Aug; 170():160-165. PubMed ID: 28521982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Strength Films Consisted of Oriented Chitosan Nanofibers for Guiding Cell Growth.
    Zhu K; Duan J; Guo J; Wu S; Lu A; Zhang L
    Biomacromolecules; 2017 Dec; 18(12):3904-3912. PubMed ID: 28992405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.