These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25665451)

  • 41. Signaling properties of CR3 (CD11b/CD18) and CR1 (CD35) in relation to phagocytosis of complement-opsonized particles.
    Fällman M; Andersson R; Andersson T
    J Immunol; 1993 Jul; 151(1):330-8. PubMed ID: 8326130
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reprogramming the phagocytic pathway--intracellular pathogens and their vacuoles (review).
    Haas A
    Mol Membr Biol; 1998; 15(3):103-21. PubMed ID: 9859108
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multifunctional role of the ubiquitin proteasome pathway in phagocytosis.
    Lalnunthangi A; Dakpa G; Tiwari S
    Prog Mol Biol Transl Sci; 2023; 194():179-217. PubMed ID: 36631192
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens.
    Underhill DM; Ozinsky A; Hajjar AM; Stevens A; Wilson CB; Bassetti M; Aderem A
    Nature; 1999 Oct; 401(6755):811-5. PubMed ID: 10548109
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neuroendocrine-immune interaction in fish: differential regulation of phagocyte activity by neuroendocrine factors.
    Verburg-van Kemenade BM; Ribeiro CM; Chadzinska M
    Gen Comp Endocrinol; 2011 May; 172(1):31-8. PubMed ID: 21262228
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phagocytosis in Drosophila: From molecules and cellular machinery to physiology.
    Melcarne C; Lemaitre B; Kurant E
    Insect Biochem Mol Biol; 2019 Jun; 109():1-12. PubMed ID: 30953686
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Mechanisms of intracellular microbicide].
    Mauël J
    Bull Eur Physiopathol Respir; 1983; 19(2):115-22. PubMed ID: 6347279
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Isolation of the phagocytic compartment from macrophages using a paramagnetic, particulate ligand.
    Lutz DA; Chen XM; McLaughlin BJ
    Anal Biochem; 1993 Oct; 214(1):205-11. PubMed ID: 8250224
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Initial receptor-ligand interactions modulate gene expression and phagosomal properties during both early and late stages of phagocytosis.
    Hoffmann E; Marion S; Mishra BB; John M; Kratzke R; Ahmad SF; Holzer D; Anand PK; Weiss DG; Griffiths G; Kuznetsov SA
    Eur J Cell Biol; 2010 Sep; 89(9):693-704. PubMed ID: 20579766
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phagocytosis in Acanthamoeba: I. A mannose receptor is responsible for the binding and phagocytosis of yeast.
    Allen PG; Dawidowicz EA
    J Cell Physiol; 1990 Dec; 145(3):508-13. PubMed ID: 2125603
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Receptors on phagocytic cells involved in microbial recognition.
    Mosser DM
    Immunol Ser; 1994; 60():99-114. PubMed ID: 7504531
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Role of human lymphoid and phagocytic membrane receptors (author's transl)].
    Meléndez M; Jurlow E
    Rev Med Chil; 1981 Jun; 109(6):543-9. PubMed ID: 7330533
    [No Abstract]   [Full Text] [Related]  

  • 53. Analysis of macrophage phagocytosis: quantitative assays of phagosome formation and maturation using high-throughput fluorescence microscopy.
    Steinberg BE; Grinstein S
    Methods Mol Biol; 2009; 531():45-56. PubMed ID: 19347310
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A systems biology analysis of the Drosophila phagosome.
    Stuart LM; Boulais J; Charriere GM; Hennessy EJ; Brunet S; Jutras I; Goyette G; Rondeau C; Letarte S; Huang H; Ye P; Morales F; Kocks C; Bader JS; Desjardins M; Ezekowitz RA
    Nature; 2007 Jan; 445(7123):95-101. PubMed ID: 17151602
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of phagocytosis on receptor distribution and endocytic activity in macrophages.
    Buys SS; Kaplan J
    J Cell Physiol; 1987 Jun; 131(3):442-9. PubMed ID: 3036889
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Visualization and Quantification of Phagocytosis by Neutrophils.
    Guzman G; Tafesse FG
    Methods Mol Biol; 2020; 2087():141-148. PubMed ID: 31728989
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Physical Constraints and Forces Involved in Phagocytosis.
    Jaumouillé V; Waterman CM
    Front Immunol; 2020; 11():1097. PubMed ID: 32595635
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nonopsonic phagocytosis of microorganisms.
    Ofek I; Goldhar J; Keisari Y; Sharon N
    Annu Rev Microbiol; 1995; 49():239-76. PubMed ID: 8561460
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multi-parametric analysis of phagocyte antimicrobial responses using imaging flow cytometry.
    Havixbeck JJ; Wong ME; More Bayona JA; Barreda DR
    J Immunol Methods; 2015 Aug; 423():85-92. PubMed ID: 25862969
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In vitro studies of activation of phagocytic cells by bioactive peptides.
    Stoika RS; Lutsik MD; Barska ML; Tsyrulnyk AA; Kashchak NI
    J Physiol Pharmacol; 2002 Dec; 53(4 Pt 1):675-88. PubMed ID: 12512702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.