These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25665558)

  • 1. In vitro and in vivo methodologies for studying the Sigma 54-dependent transcription.
    Buck M; Engl C; Joly N; Jovanovic G; Jovanovic M; Lawton E; McDonald C; Schumacher J; Waite C; Zhang N
    Methods Mol Biol; 2015; 1276():53-79. PubMed ID: 25665558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo and in vitro activities of the Escherichia coli sigma54 transcription activator, PspF, and its DNA-binding mutant, PspFDeltaHTH.
    Jovanovic G; Rakonjac J; Model P
    J Mol Biol; 1999 Jan; 285(2):469-83. PubMed ID: 9878422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A common feature from different subunits of a homomeric AAA+ protein contacts three spatially distinct transcription elements.
    Zhang N; Joly N; Buck M
    Nucleic Acids Res; 2012 Oct; 40(18):9139-52. PubMed ID: 22772990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural mechanism of GAF-regulated σ(54) activators from Aquifex aeolicus.
    Batchelor JD; Lee PS; Wang AC; Doucleff M; Wemmer DE
    J Mol Biol; 2013 Jan; 425(1):156-70. PubMed ID: 23123379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sigma54-dependent transcription activator phage shock protein F of Escherichia coli: a fragmentation approach to identify sequences that contribute to self-association.
    Bordes P; Wigneshweraraj SR; Zhang X; Buck M
    Biochem J; 2004 Mar; 378(Pt 3):735-44. PubMed ID: 14659000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A perspective on the enhancer dependent bacterial RNA polymerase.
    Zhang N; Buck M
    Biomolecules; 2015 May; 5(2):1012-9. PubMed ID: 26010401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of homotropic control to coordinate hydrolysis in a hexameric AAA+ ring ATPase.
    Schumacher J; Joly N; Claeys-Bouuaert IL; Aziz SA; Rappas M; Zhang X; Buck M
    J Mol Biol; 2008 Aug; 381(1):1-12. PubMed ID: 18599077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ATP hydrolyzing transcription activator phage shock protein F of Escherichia coli: identifying a surface that binds sigma 54.
    Bordes P; Wigneshweraraj SR; Schumacher J; Zhang X; Chaney M; Buck M
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2278-83. PubMed ID: 12601152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Essential roles of three enhancer sites in sigma54-dependent transcription by the nitric oxide sensing regulatory protein NorR.
    Tucker NP; Ghosh T; Bush M; Zhang X; Dixon R
    Nucleic Acids Res; 2010 Mar; 38(4):1182-94. PubMed ID: 19955233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallization and preliminary X-ray analysis of the ATPase domain of the σ(54)-dependent transcription activator NtrC1 from Aquifex aeolicus bound to the ATP analog ADP-BeFx.
    Sysoeva TA; Yennawar N; Allaire M; Nixon BT
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Dec; 69(Pt 12):1384-8. PubMed ID: 24316836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of activator-Esigma54 complexes formed with nucleotide-metal fluoride analogues.
    Burrows PC; Joly N; Nixon BT; Buck M
    Nucleic Acids Res; 2009 Aug; 37(15):5138-50. PubMed ID: 19553192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling sigma factor conformation to RNA polymerase reorganisation for DNA melting.
    Burrows PC; Joly N; Cannon WV; Cámara BP; Rappas M; Zhang X; Dawes K; Nixon BT; Wigneshweraraj SR; Buck M
    J Mol Biol; 2009 Mar; 387(2):306-19. PubMed ID: 19356588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro activities of an N-terminal truncated form of XylR, a sigma 54-dependent transcriptional activator of Pseudomonas putida.
    Pérez-Martín J; de Lorenzo V
    J Mol Biol; 1996 May; 258(4):575-87. PubMed ID: 8636993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of σ
    Danson AE; Jovanovic M; Buck M; Zhang X
    J Mol Biol; 2019 Sep; 431(20):3960-3974. PubMed ID: 31029702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial enhancer-binding proteins: unlocking sigma54-dependent gene transcription.
    Rappas M; Bose D; Zhang X
    Curr Opin Struct Biol; 2007 Feb; 17(1):110-6. PubMed ID: 17157497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome wide interactions of wild-type and activator bypass forms of σ54.
    Schaefer J; Engl C; Zhang N; Lawton E; Buck M
    Nucleic Acids Res; 2015 Sep; 43(15):7280-91. PubMed ID: 26082500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ArgR-independent induction and ArgR-dependent superinduction of the astCADBE operon in Escherichia coli.
    Kiupakis AK; Reitzer L
    J Bacteriol; 2002 Jun; 184(11):2940-50. PubMed ID: 12003934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metalloregulator CueR biases RNA polymerase's kinetic sampling of dead-end or open complex to repress or activate transcription.
    Martell DJ; Joshi CP; Gaballa A; Santiago AG; Chen TY; Jung W; Helmann JD; Chen P
    Proc Natl Acad Sci U S A; 2015 Nov; 112(44):13467-72. PubMed ID: 26483469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlating protein footprinting with mutational analysis in the bacterial transcription factor sigma54 (sigmaN).
    Wigneshweraraj SR; Casaz P; Buck M
    Nucleic Acids Res; 2002 Feb; 30(4):1016-28. PubMed ID: 11842114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of RNA polymerase bypass mutants: implications for the role of ppGpp and its co-factor DksA in controlling transcription dependent on sigma54.
    Szalewska-Palasz A; Johansson LUM; Bernardo LMD; Skärfstad E; Stec E; Brännström K; Shingler V
    J Biol Chem; 2007 Jun; 282(25):18046-18056. PubMed ID: 17456470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.