These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25665559)

  • 1. Methods for the assembly and analysis of in vitro transcription-coupled-to-translation systems.
    Castro-Roa D; Zenkin N
    Methods Mol Biol; 2015; 1276():81-99. PubMed ID: 25665559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methodology for the analysis of transcription and translation in transcription-coupled-to-translation systems in vitro.
    Castro-Roa D; Zenkin N
    Methods; 2015 Sep; 86():51-9. PubMed ID: 26080048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro experimental system for analysis of transcription-translation coupling.
    Castro-Roa D; Zenkin N
    Nucleic Acids Res; 2012 Mar; 40(6):e45. PubMed ID: 22210860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two Old Dogs, One New Trick: A Review of RNA Polymerase and Ribosome Interactions during Transcription-Translation Coupling.
    Conn AB; Diggs S; Tam TK; Blaha GM
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31137816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic sequence-level model of coupled transcription and translation in prokaryotes.
    Mäkelä J; Lloyd-Price J; Yli-Harja O; Ribeiro AS
    BMC Bioinformatics; 2011 Apr; 12():121. PubMed ID: 21521517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosome reactivates transcription by physically pushing RNA polymerase out of transcription arrest.
    Stevenson-Jones F; Woodgate J; Castro-Roa D; Zenkin N
    Proc Natl Acad Sci U S A; 2020 Apr; 117(15):8462-8467. PubMed ID: 32238560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription-translation coupling: direct interactions of RNA polymerase with ribosomes and ribosomal subunits.
    Fan H; Conn AB; Williams PB; Diggs S; Hahm J; Gamper HB; Hou YM; O'Leary SE; Wang Y; Blaha GM
    Nucleic Acids Res; 2017 Nov; 45(19):11043-11055. PubMed ID: 28977553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription-translation coupling: Recent advances and future perspectives.
    Woodgate J; Zenkin N
    Mol Microbiol; 2023 Oct; 120(4):539-546. PubMed ID: 37856403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measures of single- versus multiple-round translation argue against a mechanism to ensure coupling of transcription and translation.
    Chen M; Fredrick K
    Proc Natl Acad Sci U S A; 2018 Oct; 115(42):10774-10779. PubMed ID: 30275301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic dynamics and ribosome-RNAP interactions in transcription-translation coupling.
    Li X; Chou T
    Biophys J; 2023 Jan; 122(1):254-266. PubMed ID: 36199250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Regulation of bacterial transcription elongation].
    Proshkin SA; Mironov AS
    Mol Biol (Mosk); 2011; 45(3):395-415. PubMed ID: 21790003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of T7 RNA polymerase in an optimized Escherichia coli coupled in vitro transcription-translation system. Application in regulatory studies and expression of long transcription units.
    Köhrer C; Mayer C; Gröbner P; Piendl W
    Eur J Biochem; 1996 Feb; 236(1):234-9. PubMed ID: 8617270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human mitochondrial ribosomal protein MRPL12 interacts directly with mitochondrial RNA polymerase to modulate mitochondrial gene expression.
    Wang Z; Cotney J; Shadel GS
    J Biol Chem; 2007 Apr; 282(17):12610-8. PubMed ID: 17337445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A translational riboswitch coordinates nascent transcription-translation coupling.
    Chatterjee S; Chauvier A; Dandpat SS; Artsimovitch I; Walter NG
    Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33850018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the interaction of T7 RNA polymerase with a DNA template containing a site-specifically placed psoralen cross-link. II. Stability and some properties of elongation complexes.
    Sastry SS; Hearst JE
    J Mol Biol; 1991 Oct; 221(4):1111-25. PubMed ID: 1942045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA polymerase and the ribosome: the close relationship.
    McGary K; Nudler E
    Curr Opin Microbiol; 2013 Apr; 16(2):112-7. PubMed ID: 23433801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Ribosome Holds the RNA Polymerase on Track in Bacteria.
    Klaholz BP
    Trends Biochem Sci; 2017 Sep; 42(9):686-689. PubMed ID: 28801047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling of rRNA transcription and ribosomal assembly in vivo. Formation of active ribosomal subunits in Escherichia coli requires transcription of rRNA genes by host RNA polymerase which cannot be replaced by bacteriophage T7 RNA polymerase.
    Lewicki BT; Margus T; Remme J; Nierhaus KH
    J Mol Biol; 1993 Jun; 231(3):581-93. PubMed ID: 8515441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient anchoring of RNA polymerase in Escherichia coli during coupled transcription-translation of genes encoding integral inner membrane polypeptides.
    Ma D; Cook DN; Pon NG; Hearst JE
    J Biol Chem; 1994 May; 269(21):15362-70. PubMed ID: 8195175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Transcript Elongation.
    Belogurov GA; Artsimovitch I
    Annu Rev Microbiol; 2015; 69():49-69. PubMed ID: 26132790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.