These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 25665563)

  • 1. Single-stranded DNA aptamers for functional probing of bacterial RNA polymerase.
    Pupov D; Kulbachinskiy A
    Methods Mol Biol; 2015; 1276():165-83. PubMed ID: 25665563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-specific aptamer inhibitors of Thermus RNA polymerase.
    Miropolskaya N; Feklistov A; Nikiforov V; Kulbachinskiy A
    Biochem Biophys Res Commun; 2018 Jan; 495(1):110-115. PubMed ID: 29097207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aptamers to Escherichia coli core RNA polymerase that sense its interaction with rifampicin, sigma-subunit and GreB.
    Kulbachinskiy A; Feklistov A; Krasheninnikov I; Goldfarb A; Nikiforov V
    Eur J Biochem; 2004 Dec; 271(23-24):4921-31. PubMed ID: 15606780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the largest RNA polymerase subunit lid element in preventing the formation of extended RNA-DNA hybrid.
    Naryshkina T; Kuznedelov K; Severinov K
    J Mol Biol; 2006 Aug; 361(4):634-43. PubMed ID: 16781733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-strand promoter traps for bacterial RNA polymerase.
    Pupov D; Esyunina D; Feklistov A; Kulbachinskiy A
    Biochem J; 2013 Jun; 452(2):241-8. PubMed ID: 23517087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the lid element in transcription by E. coli RNA polymerase.
    Toulokhonov I; Landick R
    J Mol Biol; 2006 Aug; 361(4):644-58. PubMed ID: 16876197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly specific aptamer trap for extremophilic RNA polymerases.
    Petushkov I; Feklistov A; Kulbachinskiy A
    Biochimie; 2024 Oct; 225():99-105. PubMed ID: 38759834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-stranded DNA loops as fiducial markers for exploring DNA-protein interactions in single molecule imaging.
    Chammas O; Billingsley DJ; Bonass WA; Thomson NH
    Methods; 2013 Apr; 60(2):122-30. PubMed ID: 23500656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of RNA polymerase-antibiotic complexes.
    Ho MX; Hudson BP; Das K; Arnold E; Ebright RH
    Curr Opin Struct Biol; 2009 Dec; 19(6):715-23. PubMed ID: 19926275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding site of Escherichia coli RNA polymerase to an RNA promoter.
    Pelchat M; Perreault JP
    Biochem Biophys Res Commun; 2004 Jun; 319(2):636-42. PubMed ID: 15178453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel genomic approach identifies bacterial DNA-dependent RNA polymerase as the target of an antibacterial oligodeoxynucleotide, RBL1.
    Tan XX; Chen Y
    Biochemistry; 2005 May; 44(17):6708-14. PubMed ID: 15850405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro selection of ssDNA aptamers using biotinylated target proteins.
    Mayer G; Höver T
    Methods Mol Biol; 2009; 535():19-32. PubMed ID: 19377986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional interplay between the jaw domain of bacterial RNA polymerase and allele-specific residues in the product RNA-binding pocket.
    Ederth J; Mooney RA; Isaksson LA; Landick R
    J Mol Biol; 2006 Mar; 356(5):1163-79. PubMed ID: 16405998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence characterization of the transcription bubble in elongation complexes of T7 RNA polymerase.
    Liu C; Martin CT
    J Mol Biol; 2001 May; 308(3):465-75. PubMed ID: 11327781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins.
    Toulokhonov I; Artsimovitch I; Landick R
    Science; 2001 Apr; 292(5517):730-3. PubMed ID: 11326100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between RNA polymerase and the positive and negative regulators of transcription at the Escherichia coli gal operon.
    Dalma-Weiszhausz DD; Brenowitz M
    Biochemistry; 1996 Mar; 35(12):3735-45. PubMed ID: 8619994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA polymerase: the vehicle of transcription.
    Borukhov S; Nudler E
    Trends Microbiol; 2008 Mar; 16(3):126-34. PubMed ID: 18280161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA.
    Hirao I; Kimoto M; Mitsui T; Fujiwara T; Kawai R; Sato A; Harada Y; Yokoyama S
    Nat Methods; 2006 Sep; 3(9):729-35. PubMed ID: 16929319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of antibiotics inhibiting bacterial RNA polymerase.
    Mosaei H; Harbottle J
    Biochem Soc Trans; 2019 Feb; 47(1):339-350. PubMed ID: 30647141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mutant T7 RNA polymerase that is defective in RNA binding and blocked in the early stages of transcription.
    He B; Rong M; Durbin RK; McAllister WT
    J Mol Biol; 1997 Jan; 265(3):275-88. PubMed ID: 9018042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.