These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 25665633)
1. Xylitol production in immobilized cultures: a recent review. Pérez-Bibbins B; Torrado-Agrasar A; Salgado JM; Mussatto SI; Domínguez JM Crit Rev Biotechnol; 2016 Aug; 36(4):691-704. PubMed ID: 25665633 [TBL] [Abstract][Full Text] [Related]
2. Repeated batch cell-immobilized system for the biotechnological production of xylitol as a renewable green sweetener. Sarrouh B; da Silva SS Appl Biochem Biotechnol; 2013 Apr; 169(7):2101-10. PubMed ID: 23397324 [TBL] [Abstract][Full Text] [Related]
3. Study of the potential of the air lift bioreactor for xylitol production in fed-batch cultures by Debaryomyces hansenii immobilized in alginate beads. Pérez-Bibbins B; de Souza Oliveira RP; Torrado A; Aguilar-Uscanga MG; Domínguez JM Appl Microbiol Biotechnol; 2014 Jan; 98(1):151-61. PubMed ID: 24136467 [TBL] [Abstract][Full Text] [Related]
4. Factors that affect the biosynthesis of xylitol by xylose-fermenting yeasts. A review. Silva SS; Felipe MG; Mancilha IM Appl Biochem Biotechnol; 1998; 70-72():331-9. PubMed ID: 9627388 [TBL] [Abstract][Full Text] [Related]
5. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
6. Biotechnological production of xylitol in a three-phase fluidized bed bioreactor with immobilized yeast cells in Ca-alginate beads. Fouad Sarrouh B; Tresinari Dos Santos D; Silvério da Silva S Biotechnol J; 2007 Jun; 2(6):759-63. PubMed ID: 17427994 [TBL] [Abstract][Full Text] [Related]
7. Variables that affect xylitol production from sugarcane bagasse hydrolysate in a zeolite fluidized bed reactor. Santos JC; Mussatto SI; Cunha MA; Silva SS Biotechnol Prog; 2005; 21(6):1639-43. PubMed ID: 16321046 [TBL] [Abstract][Full Text] [Related]
8. Xylitol conversion by fermentation using five yeast strains and polyelectrolyte-assisted ultrafiltration. Ko CH; Chiu PC; Yang CL; Chang KH Biotechnol Lett; 2008 Jan; 30(1):81-6. PubMed ID: 17700994 [TBL] [Abstract][Full Text] [Related]
9. Semi-continuous xylose-to-xylitol bioconversion by Ca-alginate entrapped yeast cells in a stirred tank reactor. Carvalho W; Canilha L; Silva SS Bioprocess Biosyst Eng; 2008 Aug; 31(5):493-8. PubMed ID: 18175152 [TBL] [Abstract][Full Text] [Related]
10. Screening and characterization of yeasts for xylitol production. Guo C; Zhao C; He P; Lu D; Shen A; Jiang N J Appl Microbiol; 2006 Nov; 101(5):1096-104. PubMed ID: 17040233 [TBL] [Abstract][Full Text] [Related]
11. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. Kim JH; Han KC; Koh YH; Ryu YW; Seo JH J Ind Microbiol Biotechnol; 2002 Jul; 29(1):16-9. PubMed ID: 12080422 [TBL] [Abstract][Full Text] [Related]
12. Metabolic behavior of immobilized Candida guilliermondii cells during batch xylitol production from sugarcane bagasse acid hydrolyzate. Carvalho W; Silva SS; Converti A; Vitolo M Biotechnol Bioeng; 2002 Jul; 79(2):165-9. PubMed ID: 12115432 [TBL] [Abstract][Full Text] [Related]
13. Isolation and identification of xylitol-producing yeasts from agricultural residues. Altamirano A; Vázquez F; de Figueroa LI Folia Microbiol (Praha); 2000; 45(3):255-8. PubMed ID: 11271811 [TBL] [Abstract][Full Text] [Related]
14. Xylitol production from sugarcane bagasse hydrolyzate in fluidized bed reactor. Effect of air flowrate. Santos JC; Carvalho W; Silva SS; Converti A Biotechnol Prog; 2003; 19(4):1210-5. PubMed ID: 12892483 [TBL] [Abstract][Full Text] [Related]
15. Production of butyric acid from glucose and xylose with immobilized cells of Clostridium tyrobutyricum in a fibrous-bed bioreactor. Jiang L; Wang J; Liang S; Wang X; Cen P; Xu Z Appl Biochem Biotechnol; 2010 Jan; 160(2):350-9. PubMed ID: 18651247 [TBL] [Abstract][Full Text] [Related]
16. A rapid microwave-assisted phosphoric-acid treatment on carbon fiber surface for enhanced cell immobilization in xylitol fermentation. Wang L; Yin Y; Zhang S; Wu D; Lv Y; Hu Y; Wei Q; Yuan Q; Wang J Colloids Surf B Biointerfaces; 2019 Mar; 175():697-702. PubMed ID: 30590331 [TBL] [Abstract][Full Text] [Related]
17. Metabolic engineering strategies for improving xylitol production from hemicellulosic sugars. Su B; Wu M; Lin J; Yang L Biotechnol Lett; 2013 Nov; 35(11):1781-9. PubMed ID: 23881318 [TBL] [Abstract][Full Text] [Related]
18. Benzoate-induced stress enhances xylitol yield in aerobic fed-batch culture of Candida mogii TISTR 5892. Wannawilai S; Sirisansaneeyakul S; Chisti Y J Biotechnol; 2015 Jan; 194():58-66. PubMed ID: 25499077 [TBL] [Abstract][Full Text] [Related]
19. Systematic strain construction and process development: Xylitol production by Saccharomyces cerevisiae expressing Candida tenuis xylose reductase in wild-type or mutant form. Pratter SM; Eixelsberger T; Nidetzky B Bioresour Technol; 2015 Dec; 198():732-8. PubMed ID: 26452180 [TBL] [Abstract][Full Text] [Related]
20. Fermentative processes for the upcycling of xylose to xylitol by immobilized cells of Ranieri R; Candeliere F; Moreno-García J; Mauricio JC; Rossi M; Raimondi S; Amaretti A Front Bioeng Biotechnol; 2024; 12():1339093. PubMed ID: 38303913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]