These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 25665649)
1. Solution-processed n-type fullerene field-effect transistors prepared using CVD-grown graphene electrodes: improving performance with thermal annealing. Jeong YJ; Yun DJ; Jang J; Park S; An TK; Kim LH; Kim SH; Park CE Phys Chem Chem Phys; 2015 Mar; 17(9):6635-43. PubMed ID: 25665649 [TBL] [Abstract][Full Text] [Related]
2. High-performance organic complementary inverters using monolayer graphene electrodes. Jeong YJ; Jang J; Nam S; Kim K; Kim LH; Park S; An TK; Park CE ACS Appl Mater Interfaces; 2014 May; 6(9):6816-24. PubMed ID: 24731001 [TBL] [Abstract][Full Text] [Related]
3. Self-organizing properties of triethylsilylethynyl-anthradithiophene on monolayer graphene electrodes in solution-processed transistors. Jang J; Park J; Nam S; Anthony JE; Kim Y; Kim KS; Kim KS; Hong BH; Park CE Nanoscale; 2013 Nov; 5(22):11094-101. PubMed ID: 24071996 [TBL] [Abstract][Full Text] [Related]
4. Controllable chemical vapor deposition growth of few layer graphene for electronic devices. Wei D; Wu B; Guo Y; Yu G; Liu Y Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220 [TBL] [Abstract][Full Text] [Related]
6. Multifunctional phosphonic acid self-assembled monolayers on metal oxides as dielectrics, interface modification layers and semiconductors for low-voltage high-performance organic field-effect transistors. Ma H; Acton O; Hutchins DO; Cernetic N; Jen AK Phys Chem Chem Phys; 2012 Nov; 14(41):14110-26. PubMed ID: 22767209 [TBL] [Abstract][Full Text] [Related]
7. Surface-directed molecular assembly of pentacene on monolayer graphene for high-performance organic transistors. Lee WH; Park J; Sim SH; Lim S; Kim KS; Hong BH; Cho K J Am Chem Soc; 2011 Mar; 133(12):4447-54. PubMed ID: 21381751 [TBL] [Abstract][Full Text] [Related]
8. Significant Performance Improvement in n-Channel Organic Field-Effect Transistors with C Nam S; Khim D; Martinez GT; Varambhia A; Nellist PD; Kim Y; Anthopoulos TD; Bradley DDC Adv Mater; 2021 Aug; 33(31):e2100421. PubMed ID: 34165833 [TBL] [Abstract][Full Text] [Related]
9. Solution-processable LaZrOx/SiO2 gate dielectric at low temperature of 180 °C for high-performance metal oxide field-effect transistors. Je SY; Son BG; Kim HG; Park MY; Do LM; Choi R; Jeong JK ACS Appl Mater Interfaces; 2014 Nov; 6(21):18693-703. PubMed ID: 25285585 [TBL] [Abstract][Full Text] [Related]
10. Work-Function Engineering of Graphene Electrodes by Self-Assembled Monolayers for High-Performance Organic Field-Effect Transistors. Park J; Lee WH; Huh S; Sim SH; Kim SB; Cho K; Hong BH; Kim KS J Phys Chem Lett; 2011 Apr; 2(8):841-5. PubMed ID: 26295616 [TBL] [Abstract][Full Text] [Related]
11. High performance of low band gap polymer-based ambipolar transistor using single-layer graphene electrodes. Choi JY; Kang W; Kang B; Cha W; Son SK; Yoon Y; Kim H; Kang Y; Ko MJ; Son HJ; Cho K; Cho JH; Kim B ACS Appl Mater Interfaces; 2015 Mar; 7(10):6002-12. PubMed ID: 25734886 [TBL] [Abstract][Full Text] [Related]
12. Polarity and air-stability transitions in field-effect transistors based on fullerenes with different solubilizing groups. Yu H; Cho HH; Cho CH; Kim KH; Kim DY; Kim BJ; Oh JH ACS Appl Mater Interfaces; 2013 Jun; 5(11):4865-71. PubMed ID: 23676780 [TBL] [Abstract][Full Text] [Related]
13. Solution-processable organic dielectrics for graphene electronics. Mattevi C; Colléaux F; Kim H; Lin YH; Park KT; Chhowalla M; Anthopoulos TD Nanotechnology; 2012 Aug; 23(34):344017. PubMed ID: 22885685 [TBL] [Abstract][Full Text] [Related]
14. Solution-processed field-effect transistors based on dihexylquaterthiophene films with performances exceeding those of vacuum-sublimed films. Leydecker T; Trong Duong D; Salleo A; Orgiu E; Samorì P ACS Appl Mater Interfaces; 2014 Dec; 6(23):21248-55. PubMed ID: 25380324 [TBL] [Abstract][Full Text] [Related]
15. Atomically-thin molecular layers for electrode modification of organic transistors. Gim Y; Kang B; Kim B; Kim SG; Lee JH; Cho K; Ku BC; Cho JH Nanoscale; 2015 Sep; 7(33):14100-8. PubMed ID: 26243510 [TBL] [Abstract][Full Text] [Related]
16. Interface engineering: an effective approach toward high-performance organic field-effect transistors. Di CA; Liu Y; Yu G; Zhu D Acc Chem Res; 2009 Oct; 42(10):1573-83. PubMed ID: 19645474 [TBL] [Abstract][Full Text] [Related]
17. Graphene-based electrodes for enhanced organic thin film transistors based on pentacene. Basu S; Lee MC; Wang YH Phys Chem Chem Phys; 2014 Aug; 16(31):16701-10. PubMed ID: 25000388 [TBL] [Abstract][Full Text] [Related]
18. High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals. Li H; Tee BC; Cha JJ; Cui Y; Chung JW; Lee SY; Bao Z J Am Chem Soc; 2012 Feb; 134(5):2760-5. PubMed ID: 22239604 [TBL] [Abstract][Full Text] [Related]
19. Large-Area CVD-Grown Sub-2 V ReS Dathbun A; Kim Y; Kim S; Yoo Y; Kang MS; Lee C; Cho JH Nano Lett; 2017 May; 17(5):2999-3005. PubMed ID: 28414455 [TBL] [Abstract][Full Text] [Related]
20. Low-voltage organic electronics based on a gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructures. Hlaing H; Kim CH; Carta F; Nam CY; Barton RA; Petrone N; Hone J; Kymissis I Nano Lett; 2015 Jan; 15(1):69-74. PubMed ID: 25517922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]