These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 25665842)

  • 1. Nucleus deformation of SaOs-2 cells on rhombic µ-pillars.
    Eichhorn M; Stannard C; Anselme K; Rühe J
    J Mater Sci Mater Med; 2015 Feb; 26(2):108. PubMed ID: 25665842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directing nuclear deformation on micropillared surfaces by substrate geometry and cytoskeleton organization.
    Badique F; Stamov DR; Davidson PM; Veuillet M; Reiter G; Freund JN; Franz CM; Anselme K
    Biomaterials; 2013 Apr; 34(12):2991-3001. PubMed ID: 23357373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite-element analysis of the adhesion-cytoskeleton-nucleus mechanotransduction pathway during endothelial cell rounding: axisymmetric model.
    Jean RP; Chen CS; Spector AA
    J Biomech Eng; 2005 Aug; 127(4):594-600. PubMed ID: 16121529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topographically induced self-deformation of the nuclei of cells: dependence on cell type and proposed mechanisms.
    Davidson PM; Fromigué O; Marie PJ; Hasirci V; Reiter G; Anselme K
    J Mater Sci Mater Med; 2010 Mar; 21(3):939-46. PubMed ID: 20012166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonmonotonic Self-Deformation of Cell Nuclei on Topological Surfaces with Micropillar Array.
    Liu X; Liu R; Gu Y; Ding J
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18521-18530. PubMed ID: 28514142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of cell nucleus shapes via micropillar patterns.
    Pan Z; Yan C; Peng R; Zhao Y; He Y; Ding J
    Biomaterials; 2012 Feb; 33(6):1730-5. PubMed ID: 22133552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the nuclear deformation caused by changes in endothelial cell shape.
    Jean RP; Gray DS; Spector AA; Chen CS
    J Biomech Eng; 2004 Oct; 126(5):552-8. PubMed ID: 15648807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplification of nuclear deformation of breast cancer cells by seeding on micropatterned surfaces to better distinguish their malignancies.
    Antmen E; Demirci U; Hasirci V
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110402. PubMed ID: 31398621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different surface sensing of the cell body and nucleus in healthy primary cells and in a cancerous cell line on nanogrooves.
    Davidson PM; Bigerelle M; Reiter G; Anselme K
    Biointerphases; 2015 Oct; 10(3):031004. PubMed ID: 26231726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow-induced hardening of endothelial nucleus as an intracellular stress-bearing organelle.
    Deguchi S; Maeda K; Ohashi T; Sato M
    J Biomech; 2005 Sep; 38(9):1751-9. PubMed ID: 16005465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcellular cell geometry on micropillars regulates stem cell differentiation.
    Liu X; Liu R; Cao B; Ye K; Li S; Gu Y; Pan Z; Ding J
    Biomaterials; 2016 Dec; 111():27-39. PubMed ID: 27716524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nucleus is irreversibly shaped by motion of cell boundaries in cancer and non-cancer cells.
    Tocco VJ; Li Y; Christopher KG; Matthews JH; Aggarwal V; Paschall L; Luesch H; Licht JD; Dickinson RB; Lele TP
    J Cell Physiol; 2018 Feb; 233(2):1446-1454. PubMed ID: 28542912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proliferation of Cells with Severe Nuclear Deformation on a Micropillar Array.
    Liu R; Yao X; Liu X; Ding J
    Langmuir; 2019 Jan; 35(1):284-299. PubMed ID: 30513205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Flow-induced hardening of endothelial nucleus..." by Deguchi et al.
    Bischoff JE
    J Biomech; 2006; 39(7):1361-2; author reply1362. PubMed ID: 16574128
    [No Abstract]   [Full Text] [Related]  

  • 15. A Chemomechanical Model for Nuclear Morphology and Stresses during Cell Transendothelial Migration.
    Cao X; Moeendarbary E; Isermann P; Davidson PM; Wang X; Chen MB; Burkart AK; Lammerding J; Kamm RD; Shenoy VB
    Biophys J; 2016 Oct; 111(7):1541-1552. PubMed ID: 27705776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of collective cell behaviour by geometrical constraints.
    Lunova M; Zablotskii V; Dempsey NM; Devillers T; Jirsa M; Syková E; Kubinová Š; Lunov O; Dejneka A
    Integr Biol (Camb); 2016 Nov; 8(11):1099-1110. PubMed ID: 27738682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of RhoA kinase (ROCK) in cell alignment on nanofibers.
    Andalib MN; Lee JS; Ha L; Dzenis Y; Lim JY
    Acta Biomater; 2013 Aug; 9(8):7737-45. PubMed ID: 23587628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interrelationship of micromechanics and morphology of fibroblasts adhered on different polymeric surfaces.
    Sit PS; Kohn J
    Acta Biomater; 2009 Oct; 5(8):2823-31. PubMed ID: 19477303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a technique to determine strains in tendons using the cell nuclei.
    Screen HR; Lee DA; Bader DL; Shelton JC
    Biorheology; 2003; 40(1-3):361-8. PubMed ID: 12454427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematically organized nanopillar arrays reveal differences in adhesion and alignment properties of BMSC and Saos-2 cells.
    Özçelik H; Padeste C; Hasirci V
    Colloids Surf B Biointerfaces; 2014 Jul; 119():71-81. PubMed ID: 24704331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.