These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25665929)

  • 1. Comparison of photoluminescence quantum yield of single gold nanobipyramids and gold nanorods.
    Rao W; Li Q; Wang Y; Li T; Wu L
    ACS Nano; 2015 Mar; 9(3):2783-91. PubMed ID: 25665929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio.
    Fang Y; Chang WS; Willingham B; Swanglap P; Dominguez-Medina S; Link S
    ACS Nano; 2012 Aug; 6(8):7177-84. PubMed ID: 22830934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface plasmon resonance properties of single elongated nano-objects: gold nanobipyramids and nanorods.
    Lombardi A; Loumaigne M; Crut A; Maioli P; Del Fatti N; Vallée F; Spuch-Calvar M; Burgin J; Majimel J; Tréguer-Delapierre M
    Langmuir; 2012 Jun; 28(24):9027-33. PubMed ID: 22369067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional orientation sensors by defocused imaging of gold nanorods through an ordinary wide-field microscope.
    Li T; Li Q; Xu Y; Chen XJ; Dai QF; Liu H; Lan S; Tie S; Wu LJ
    ACS Nano; 2012 Feb; 6(2):1268-77. PubMed ID: 22264116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and two-photon excitation.
    Li X; Kao FJ; Chuang CC; He S
    Opt Express; 2010 May; 18(11):11335-46. PubMed ID: 20588995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy.
    Wu X; Ming T; Wang X; Wang P; Wang J; Chen J
    ACS Nano; 2010 Jan; 4(1):113-20. PubMed ID: 20014823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy.
    Chen NT; Tang KC; Chung MF; Cheng SH; Huang CM; Chu CH; Chou PT; Souris JS; Chen CT; Mou CY; Lo LW
    Theranostics; 2014; 4(8):798-807. PubMed ID: 24955141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of gold nanorods with tunable longitudinal surface plasmon resonance peaks by reductive dopamine.
    Su G; Yang C; Zhu JJ
    Langmuir; 2015 Jan; 31(2):817-23. PubMed ID: 25521416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods.
    Huang H; Tang C; Zeng Y; Yu X; Liao B; Xia X; Yi P; Chu PK
    Colloids Surf B Biointerfaces; 2009 Jun; 71(1):96-101. PubMed ID: 19211228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA induced intense plasmonic circular dichroism of highly purified gold nanobipyramids.
    Liu W; Liu D; Zhu Z; Han B; Gao Y; Tang Z
    Nanoscale; 2014 May; 6(9):4498-502. PubMed ID: 24647652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells.
    Li JL; Gu M
    Biomaterials; 2010 Dec; 31(36):9492-8. PubMed ID: 20932571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyelectrolyte-coated gold nanorods and their biomedical applications.
    Pissuwan D; Niidome T
    Nanoscale; 2015 Jan; 7(1):59-65. PubMed ID: 25387820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A colorimetric probe for online analysis of sulfide based on the red shifts of longitudinal surface plasmon resonance absorption resulting from the stripping of gold nanorods.
    Liu JM; Wang XX; Li FM; Lin LP; Cai WL; Lin X; Zhang LH; Li ZM; Lin SQ
    Anal Chim Acta; 2011 Dec; 708(1-2):130-3. PubMed ID: 22093355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of monolayer protected lipophilic gold nanorods on a glass surface.
    Ori G; Gentili D; Cavallini M; Franchini MC; Zapparoli M; Montorsi M; Siligardi C
    Nanotechnology; 2012 Feb; 23(5):055605. PubMed ID: 22236659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The aggregation enhanced photoluminescence of gold nanorods in aqueous solutions.
    Cen Y; Huang X; Zhang R; Chen JY
    J Fluoresc; 2014 Sep; 24(5):1481-6. PubMed ID: 25096523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-photon and two-photon cellular imagings of gold nanorods and dyes.
    Liaw JW; Tsai SW; Chen KL; Hsu FY
    J Nanosci Nanotechnol; 2010 Jan; 10(1):467-73. PubMed ID: 20352878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of narrow dispersity gold nanorods by asymmetrical flow field-flow fractionation and investigation of surface plasmon resonance.
    Runyon JR; Goering A; Yong KT; Williams SK
    Anal Chem; 2013 Jan; 85(2):940-8. PubMed ID: 23215235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells.
    Zhu J; Yong KT; Roy I; Hu R; Ding H; Zhao L; Swihart MT; He GS; Cui Y; Prasad PN
    Nanotechnology; 2010 Jul; 21(28):285106. PubMed ID: 20585168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved sensitivity of wavelength-modulated surface plasmon resonance biosensor using gold nanorods.
    Hao P; Wu Y; Li F
    Appl Opt; 2011 Oct; 50(28):5555-8. PubMed ID: 22016225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.