BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

841 related articles for article (PubMed ID: 25665968)

  • 1. Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality.
    Vukelić M; Gharabaghi A
    Neuroimage; 2015 May; 111():1-11. PubMed ID: 25665968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different oscillatory entrainment of cortical networks during motor imagery and neurofeedback in right and left handers.
    Vukelić M; Belardinelli P; Guggenberger R; Royter V; Gharabaghi A
    Neuroimage; 2019 Jul; 195():190-202. PubMed ID: 30951847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reinforcement learning of self-regulated sensorimotor β-oscillations improves motor performance.
    Naros G; Naros I; Grimm F; Ziemann U; Gharabaghi A
    Neuroimage; 2016 Jul; 134():142-152. PubMed ID: 27046109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain oscillatory signatures of motor tasks.
    Ramos-Murguialday A; Birbaumer N
    J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronization of Slow Cortical Rhythms During Motor Imagery-Based Brain-Machine Interface Control.
    Barios JA; Ezquerro S; Bertomeu-Motos A; Nann M; Badesa FJ; Fernandez E; Soekadar SR; Garcia-Aracil N
    Int J Neural Syst; 2019 Jun; 29(5):1850045. PubMed ID: 30587046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bridging the gap between motor imagery and motor execution with a brain-robot interface.
    Bauer R; Fels M; Vukelić M; Ziemann U; Gharabaghi A
    Neuroimage; 2015 Mar; 108():319-27. PubMed ID: 25527239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-robot interface driven plasticity: Distributed modulation of corticospinal excitability.
    Kraus D; Naros G; Bauer R; Leão MT; Ziemann U; Gharabaghi A
    Neuroimage; 2016 Jan; 125():522-532. PubMed ID: 26505298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle-selective disinhibition of corticomotor representations using a motor imagery-based brain-computer interface.
    Takemi M; Maeda T; Masakado Y; Siebner HR; Ushiba J
    Neuroimage; 2018 Dec; 183():597-605. PubMed ID: 30172003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of motor-imagery ability via combined action observation and motor-imagery training with proprioceptive neurofeedback.
    Ono Y; Wada K; Kurata M; Seki N
    Neuropsychologia; 2018 Jun; 114():134-142. PubMed ID: 29698736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting workload profiles of brain-robot interface and electromygraphic neurofeedback with cortical resting-state networks: personal trait or task-specific challenge?
    Fels M; Bauer R; Gharabaghi A
    J Neural Eng; 2015 Aug; 12(4):046029. PubMed ID: 26170164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateralized alpha-band cortical networks regulate volitional modulation of beta-band sensorimotor oscillations.
    Vukelić M; Bauer R; Naros G; Naros I; Braun C; Gharabaghi A
    Neuroimage; 2014 Feb; 87():147-53. PubMed ID: 24121086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Closed-loop adaptation of neurofeedback based on mental effort facilitates reinforcement learning of brain self-regulation.
    Bauer R; Fels M; Royter V; Raco V; Gharabaghi A
    Clin Neurophysiol; 2016 Sep; 127(9):3156-3164. PubMed ID: 27474965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beta-band activity and connectivity in sensorimotor and parietal cortex are important for accurate motor performance.
    Chung JW; Ofori E; Misra G; Hess CW; Vaillancourt DE
    Neuroimage; 2017 Jan; 144(Pt A):164-173. PubMed ID: 27746389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of visual and proprioceptive feedback on sensorimotor rhythms during BCI training.
    Halme HL; Parkkonen L
    PLoS One; 2022; 17(2):e0264354. PubMed ID: 35196360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proprioceptive Feedback Facilitates Motor Imagery-Related Operant Learning of Sensorimotor β-Band Modulation.
    Darvishi S; Gharabaghi A; Boulay CB; Ridding MC; Abbott D; Baumert M
    Front Neurosci; 2017; 11():60. PubMed ID: 28232788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of real-time cortical feedback in motor imagery-based mental practice training.
    Bai O; Huang D; Fei DY; Kunz R
    NeuroRehabilitation; 2014; 34(2):355-63. PubMed ID: 24401829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A BCI based visual-haptic neurofeedback training improves cortical activations and classification performance during motor imagery.
    Wang Z; Zhou Y; Chen L; Gu B; Liu S; Xu M; Qi H; He F; Ming D
    J Neural Eng; 2019 Oct; 16(6):066012. PubMed ID: 31365911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensory threshold neuromuscular electrical stimulation fosters motor imagery performance.
    Corbet T; Iturrate I; Pereira M; Perdikis S; Millán JDR
    Neuroimage; 2018 Aug; 176():268-276. PubMed ID: 29689307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-actuated gait trainer with visual and proprioceptive feedback.
    Liu D; Chen W; Lee K; Chavarriaga R; Bouri M; Pei Z; Del R Millán J
    J Neural Eng; 2017 Oct; 14(5):056017. PubMed ID: 28696340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using a hybrid brain computer interface and virtual reality system to monitor and promote cortical reorganization through motor activity and motor imagery training.
    Bermúdez i Badia S; García Morgade A; Samaha H; Verschure PF
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):174-81. PubMed ID: 23204287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.