BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 25666062)

  • 1. Could tyrosine and tryptophan serve multiple roles in biological redox processes?
    Winkler JR; Gray HB
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2037):. PubMed ID: 25666062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron flow through biological molecules: does hole hopping protect proteins from oxidative damage?
    Winkler JR; Gray HB
    Q Rev Biophys; 2015 Nov; 48(4):411-20. PubMed ID: 26537399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan-accelerated electron flow through proteins.
    Shih C; Museth AK; Abrahamsson M; Blanco-Rodriguez AM; Di Bilio AJ; Sudhamsu J; Crane BR; Ronayne KL; Towrie M; Vlcek A; Richards JH; Winkler JR; Gray HB
    Science; 2008 Jun; 320(5884):1760-2. PubMed ID: 18583608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photogeneration and Quenching of Tryptophan Radical in Azurin.
    Larson BC; Pomponio JR; Shafaat HS; Kim RH; Leigh BS; Tauber MJ; Kim JE
    J Phys Chem B; 2015 Jul; 119(29):9438-49. PubMed ID: 25625660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton-coupled electron hopping in Ru-modified P. aeruginosa azurin.
    Warren JJ; Shafaat OS; Winkler JR; Gray HB
    J Biol Inorg Chem; 2016 Mar; 21(1):113-9. PubMed ID: 26790882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Local Electrostatics on the Redox Properties of Tryptophan Radicals in Azurin: Implications for Redox-Active Tryptophans in Proton-Coupled Electron Transfer.
    Tyson KJ; Davis AN; Norris JL; Bartolotti LJ; Hvastkovs EG; Offenbacher AR
    J Phys Chem Lett; 2020 Apr; 11(7):2408-2413. PubMed ID: 32134666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoinduced hole hopping through tryptophans in proteins.
    Záliš S; Heyda J; Šebesta F; Winkler JR; Gray HB; Vlček A
    Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33836608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hole Hopping Across a Protein-Protein Interface.
    Takematsu K; Pospíšil P; Pižl M; Towrie M; Heyda J; Záliš S; Kaiser JT; Winkler JR; Gray HB; Vlček A
    J Phys Chem B; 2019 Feb; 123(7):1578-1591. PubMed ID: 30673250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the physiologically equivalent proteins cytochrome c6 and plastocyanin on the basis of their electrostatic potentials. Tryptophan 63 in cytochrome c6 may be isofunctional with tyrosine 83 in plastocyanin.
    Ullmann GM; Hauswald M; Jensen A; Kostić NM; Knapp EW
    Biochemistry; 1997 Dec; 36(51):16187-96. PubMed ID: 9405052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemistry. Electron relay in proteins.
    Bollinger JM
    Science; 2008 Jun; 320(5884):1730-1. PubMed ID: 18583602
    [No Abstract]   [Full Text] [Related]  

  • 11. Tryptophan-accelerated electron flow across a protein-protein interface.
    Takematsu K; Williamson H; Blanco-Rodríguez AM; Sokolová L; Nikolovski P; Kaiser JT; Towrie M; Clark IP; Vlček A; Winkler JR; Gray HB
    J Am Chem Soc; 2013 Oct; 135(41):15515-25. PubMed ID: 24032375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron tunneling in rhenium-modified Pseudomonas aeruginosa azurins.
    Miller JE; Di Bilio AJ; Wehbi WA; Green MT; Museth AK; Richards JR; Winkler JR; Gray HB
    Biochim Biophys Acta; 2004 Apr; 1655(1-3):59-63. PubMed ID: 15100017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton-regulated electron transfers from tyrosine to tryptophan in proteins: through-bond mechanism versus long-range hopping mechanism.
    Chen X; Zhang L; Zhang L; Wang J; Liu H; Bu Y
    J Phys Chem B; 2009 Dec; 113(52):16681-8. PubMed ID: 20028142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic comparison of photogenerated tryptophan radicals in azurin: effects of local environment and structure.
    Shafaat HS; Leigh BS; Tauber MJ; Kim JE
    J Am Chem Soc; 2010 Jul; 132(26):9030-9. PubMed ID: 20536238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron flow through nitrotyrosinate in Pseudomonas aeruginosa azurin.
    Warren JJ; Herrera N; Hill MG; Winkler JR; Gray HB
    J Am Chem Soc; 2013 Jul; 135(30):11151-8. PubMed ID: 23859602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the protein environment on the spectral properties of tryptophan radicals in Pseudomonas aeruginosa azurin.
    Bernini C; Andruniów T; Olivucci M; Pogni R; Basosi R; Sinicropi A
    J Am Chem Soc; 2013 Mar; 135(12):4822-33. PubMed ID: 23458492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction dynamics and proton coupled electron transfer: studies of tyrosine-based charge transfer in natural and biomimetic systems.
    Barry BA
    Biochim Biophys Acta; 2015 Jan; 1847(1):46-54. PubMed ID: 25260243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopy and reactivity of a photogenerated tryptophan radical in a structurally defined protein environment.
    Miller JE; Grădinaru C; Crane BR; Di Bilio AJ; Wehbi WA; Un S; Winkler JR; Gray HB
    J Am Chem Soc; 2003 Nov; 125(47):14220-1. PubMed ID: 14624538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the Thermodynamics and Kinetics of Amino-Acid Radicals in Proteins.
    Tommos C
    Annu Rev Biophys; 2022 May; 51():453-471. PubMed ID: 35133854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gated electron transfers and electron pathways in azurin: a NMR dynamic study at multiple fields and temperatures.
    Zhuravleva AV; Korzhnev DM; Kupce E; Arseniev AS; Billeter M; Orekhov VY
    J Mol Biol; 2004 Oct; 342(5):1599-611. PubMed ID: 15364584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.