These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 25666462)

  • 1. Sequencing, assembly, annotation, and gene expression: novel insights into the hormonal control of carrot root development revealed by a high-throughput transcriptome.
    Wang GL; Jia XL; Xu ZS; Wang F; Xiong AS
    Mol Genet Genomics; 2015 Aug; 290(4):1379-91. PubMed ID: 25666462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exogenous gibberellin altered morphology, anatomic and transcriptional regulatory networks of hormones in carrot root and shoot.
    Wang GL; Que F; Xu ZS; Wang F; Xiong AS
    BMC Plant Biol; 2015 Dec; 15():290. PubMed ID: 26667233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression profiles of genes involved in jasmonic acid biosynthesis and signaling during growth and development of carrot.
    Wang G; Huang W; Li M; Xu Z; Wang F; Xiong A
    Acta Biochim Biophys Sin (Shanghai); 2016 Sep; 48(9):795-803. PubMed ID: 27325823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome profiling of genes involving in carotenoid biosynthesis and accumulation between leaf and root of carrot (Daucus carota L.).
    Ma J; Li J; Xu Z; Wang F; Xiong A
    Acta Biochim Biophys Sin (Shanghai); 2018 May; 50(5):481-490. PubMed ID: 29617714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissecting the genetic control of root and leaf tissue-specific anthocyanin pigmentation in carrot (Daucus carota L.).
    Bannoud F; Ellison S; Paolinelli M; Horejsi T; Senalik D; Fanzone M; Iorizzo M; Simon PW; Cavagnaro PF
    Theor Appl Genet; 2019 Sep; 132(9):2485-2507. PubMed ID: 31144001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome-based identification of genes revealed differential expression profiles and lignin accumulation during root development in cultivated and wild carrots.
    Wang GL; Huang Y; Zhang XY; Xu ZS; Wang F; Xiong AS
    Plant Cell Rep; 2016 Aug; 35(8):1743-55. PubMed ID: 27160835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide identification, expansion, and evolution analysis of homeobox genes and their expression profiles during root development in carrot.
    Que F; Wang GL; Li T; Wang YH; Xu ZS; Xiong AS
    Funct Integr Genomics; 2018 Nov; 18(6):685-700. PubMed ID: 29909521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of the
    Machaj G; Grzebelus D
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34069875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological Characteristics, Anatomical Structure, and Gene Expression: Novel Insights into Cytokinin Accumulation during Carrot Growth and Development.
    Wang GL; Sun S; Xing GM; Wu XJ; Wang F; Xiong AS
    PLoS One; 2015; 10(7):e0134166. PubMed ID: 26218147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A de novo transcriptome analysis revealed that photomorphogenic genes are required for carotenoid synthesis in the dark-grown carrot taproot.
    Arias D; Maldonado J; Silva H; Stange C
    Mol Genet Genomics; 2020 Nov; 295(6):1379-1392. PubMed ID: 32656704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of carotenoid biosynthesis genes during carrot root development.
    Clotault J; Peltier D; Berruyer R; Thomas M; Briard M; Geoffriau E
    J Exp Bot; 2008; 59(13):3563-73. PubMed ID: 18757491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mining for Candidate Genes Controlling Secondary Growth of the Carrot Storage Root.
    Macko-Podgórni A; Stelmach K; Kwolek K; Machaj G; Ellison S; Senalik DA; Simon PW; Grzebelus D
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32549408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome Sequencing Reveals the Mechanism of Auxin Regulation during Root Expansion in Carrot.
    Li X; Yan X; Wu Z; Hou L; Li M
    Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Next-generation sequencing (NGS) transcriptomes reveal association of multiple genes and pathways contributing to secondary metabolites accumulation in tuberous roots of Aconitum heterophyllum Wall.
    Pal T; Malhotra N; Chanumolu SK; Chauhan RS
    Planta; 2015 Jul; 242(1):239-58. PubMed ID: 25904478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and Characterization of Terpene Synthases Potentially Involved in the Formation of Volatile Terpenes in Carrot (Daucus carota L.) Roots.
    Yahyaa M; Tholl D; Cormier G; Jensen R; Simon PW; Ibdah M
    J Agric Food Chem; 2015 May; 63(19):4870-8. PubMed ID: 25924989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Pigment Accumulation in Carrot Leaves and Roots during Two Growing Periods.
    Perrin F; Brahem M; Dubois-Laurent C; Huet S; Jourdan M; Geoffriau E; Peltier D; Gagné S
    J Agric Food Chem; 2016 Feb; 64(4):906-12. PubMed ID: 26752004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data.
    Tian XJ; Long Y; Wang J; Zhang JW; Wang YY; Li WM; Peng YF; Yuan QH; Pei XW
    PLoS One; 2015; 10(7):e0131455. PubMed ID: 26134138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of ascorbic acid biosynthesis and recycling during root development in carrot (Daucus carota L.).
    Wang GL; Xu ZS; Wang F; Li MY; Tan GF; Xiong AS
    Plant Physiol Biochem; 2015 Sep; 94():10-8. PubMed ID: 25956452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome analysis of rice mature root tissue and root tips in early development by massive parallel sequencing.
    Kyndt T; Denil S; Haegeman A; Trooskens G; De Meyer T; Van Criekinge W; Gheysen G
    J Exp Bot; 2012 Mar; 63(5):2141-57. PubMed ID: 22213813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo assembly of wheat root transcriptomes and transcriptional signature of longitudinal differentiation.
    Challa GS; Li W
    PLoS One; 2018; 13(11):e0205582. PubMed ID: 30395610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.